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Abstract

The unexpectedly rapid rise of remote work in recent years has upended longstanding
travel patterns. Commuting to work is no longer a routine trip with a fixed desti-
nation; millions of people have suddenly been granted the flexibility to choose their
own work location and travel schedule when working remotely. Urban transportation
systems designed and operated to serve regular commuters are struggling to meet
the evolving mobility needs of their communities and are facing substantial demand
shortfalls as a result. Moreover, there is evidence of a latent desire for new mobility
services and land use policies that allow remote workers to take full advantage of the
flexibility offered by remote work.

This dissertation takes a three-step approach to addressing the issues presented
by remote work through transportation policy. First, it creates the conceptual in-
frastructure needed to support interdisciplinary remote work research that can be
translated into evidence-based policy. This infrastructure includes a common tax-
onomy of remote work stakeholders and arrangements, a map of the relationships
between stakeholders, and a conceptual framework for describing and classifying in-
dividual remote work studies. Several examples demonstrate how the taxonomy and
framework can be used to develop comprehensive research findings that facilitate the
design of remote work policy.

The second step is collecting and analyzing extensive primary data related to
remote work arrangements and associated travel behavior. New questions were added
to a monthly national survey, allowing the identification of unanticipated aggregate
and disaggregate trends. One of the most important findings is that approximately
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one-third of all remote work takes place outside of the home, at other work-friendly
third places such as coffee shops and libraries. Many personal factors are found to
be predictive of the choice of work location, including household characteristics such
as the presence of roommates, employer remote work policies, and attitudes towards
colleagues. An extended example of modeling the commuting frequency, mode choice,
departure time, and destination of commutes to third places demonstrates how this
rich source of data can be used to inform travel demand modeling for remote workers.
These new models, which leverage zero-one inflated beta regression and mobile phone
records to predict individual commuting patterns, are then applied to the City of
Chicago to estimate the impact of remote work on carbon emissions from commuting.
The study finds that overall carbon emissions are reduced by 31% relative to a 2019
baseline, and that commutes to third places are responsible for 16% of all commuting-
related emissions.

The third step is applying the insights and predictive models generated from the
previously collected data to optimize urban mobility systems for remote work. The
studies in this section of the dissertation tackle challenges faced by different remote
work stakeholders: shared mobility platforms, public transit agencies, and shared
workplace providers. For shared mobility platforms, a new type of ride-pooling ser-
vice that leverages the destination flexibility of remote workers and other customers
is shown to lead to more efficient passenger-vehicle matching and thus the total
reduce vehicle distance traveled. A case study using ride-hailing data from Manhat-
tan estimates that when a quarter of passengers have flexible destinations, overall
travel can be reduced by 4.8%. The matching algorithm also allows shared mobility
platforms to cooperate with employers and shared workplace providers to offer an
all-inclusive mobility and workplace service. Employer incentives for employees to
work at the same location as their team members are found to reduce the efficiency
of passenger-vehicle matching and lead to longer trips.

To help public transit agencies respond to remote work, a new transit capacity
flexibility model is developed. It allows agencies to evaluate the capacity of the
network under different levels of passenger flexibility and changing destination pref-
erences. The capacity flexibility model, which is the first such model that is tractable
for network-sized problems, is then solved for the Boston rapid transit system. It
demonstrates that the Boston network can accommodate 13% fewer passengers when
commuting demand partially shifts from the downtown core to neighborhood centers
as a consequence of remote work.

Many governments are exploring opportunities to build new shared workplaces
due to substantial interest in working at third places among remote workers. Shared
workplaces can also address some of the social issues presented by remote work, such
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as social isolation and fewer interaction opportunities. The third study in this section
proposes an integer programming model for selecting optimal shared workplace sites
under social objectives. It finds that the distribution of shared workplaces varies
significantly depending on the objective, and proposes a multi-objective framework
for generating solutions with a balanced set of social benefits.

To conclude, the potential applications of this research are discussed and an
extensive agenda for future remote work and urban mobility research is presented.

Thesis Supervisor: Jinhua Zhao
Title: Professor of City and Transportation Planning, MIT

5



Acknowledgments

To the extent that this dissertation is successful, it is so due to the influence of the

many wonderful people who either shaped my thinking, my life, or both. First, thank

you to Jinhua, who has been a fountain of encouragement, wisdom, and ideas, and

truly the best Ph.D. advisor one could imagine. To the committee, Patrick Jaillet

and Sandy Pentland, thank you for your generous advice and for always inspiring me

to be more ambitious in my research. Finally, a big thank you to Anson, Bhuvan,

Fred, Haris, Jim, and John A., who consistently guided me and my research from

my first day with the lab.

None of this would have been possible without the camaraderie of the JTL-Transit

Lab students. Thank you to Xiaotong, for being a terrific partner on this research

direction and for the discussions that led to many of the concepts and methods in this

dissertation. Likewise to Yunhan, Baichuan, John M., Shenhao, Hongmou, Michael,

Yuzhu, Daniela, and Yen-Chu, I am grateful for having had the opportunity to

collaborate with you directly and learn from you all. Then to Qingyi, Mike, Lauren,

Patrick, Ehab, Rachel, Annie, Dan, Emma, Devin, Joseph, Awad, Dingyi, and many

others for making JTL such a fun and intellectually stimulating community.

I am so deeply thankful to my family for a lifetime of support and for being such

great role models. I especially appreciate the effort you’ve made to ensure that we

spend quality time together, regardless of how far away I’ve lived. To my future

new parents, siblings and extended family, thanks for welcoming me with open arms

and for your patience with all of the late night paper writing and early morning

meetings during our visits. Finally, to my soon-to-be wife Nikki, who has never

stopped sharing her endless strength and kindness, I can never thank you enough.

6



Contents

1 Introduction 23

1.1 Background and motivation . . . . . . . . . . . . . . . . . . . . . . . 23

1.2 General literature review . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.2.1 Context: the rise of remote work . . . . . . . . . . . . . . . . 29

1.2.2 Travel behavior . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.2.3 Transportation science . . . . . . . . . . . . . . . . . . . . . . 35

1.2.4 Land use and real estate . . . . . . . . . . . . . . . . . . . . . 38

1.2.5 Organizational behavior . . . . . . . . . . . . . . . . . . . . . 40

1.3 Research questions and objectives . . . . . . . . . . . . . . . . . . . . 44

1.4 Methodology and dissertation structure . . . . . . . . . . . . . . . . . 46

1.4.1 Chapter 2: Motivation and theory . . . . . . . . . . . . . . . . 48

1.4.2 Chapters 3-5: Empirical evidence . . . . . . . . . . . . . . . . 49

1.4.3 Chapters 6-8: Methodological innovations . . . . . . . . . . . 52

1.5 Related publications . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2 An interdisciplinary approach to remote work and urban policy 55

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.2 A new era for remote work . . . . . . . . . . . . . . . . . . . . . . . . 58

7



2.3 Challenges in connecting remote work research to policy . . . . . . . 62

2.4 Towards interdisciplinary research . . . . . . . . . . . . . . . . . . . . 65

2.4.1 Stakeholder taxonomy . . . . . . . . . . . . . . . . . . . . . . 65

2.4.2 Conceptual framework . . . . . . . . . . . . . . . . . . . . . . 69

2.5 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3 The impacts of remote work on travel: insights from three years of

monthly surveys 75

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.3 Survey methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.4 Survey findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.4.1 Work location choice . . . . . . . . . . . . . . . . . . . . . . . 84

3.4.2 Mode choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.4.3 Departure time . . . . . . . . . . . . . . . . . . . . . . . . . . 102

3.4.4 Productivity and travel . . . . . . . . . . . . . . . . . . . . . . 104

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4 Enhancing travel behavior models to address the complexities of

remote work 109

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.3.1 Mixed discrete-continuous remote work preferences . . . . . . 118

4.3.2 The influence of employment, household, and attitudinal vari-

ables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

8



4.3.3 Predicting discretionary work trip destinations . . . . . . . . . 134

4.4 Conclusions and policy implications . . . . . . . . . . . . . . . . . . . 141

5 The benefits and limitations of remote work for reducing carbon

emissions 145

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.2.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5.2.2 Work location distribution and carbon impact . . . . . . . . . 151

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

6 Evaluating the travel impacts of a shared mobility system for remote

workers 169

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

6.2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

6.3 Remote work dependencies . . . . . . . . . . . . . . . . . . . . . . . . 174

6.4 Adding dependencies to shared mobility models . . . . . . . . . . . . 176

6.4.1 Adding flexible destinations (I) . . . . . . . . . . . . . . . . . 177

6.4.2 Location dependency (II) . . . . . . . . . . . . . . . . . . . . . 186

6.4.3 Associate dependencies (III) . . . . . . . . . . . . . . . . . . . 188

6.5 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

6.5.1 Experiment design . . . . . . . . . . . . . . . . . . . . . . . . 191

6.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

6.6 Policy implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

6.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

9



7 Tractable optimization models for evaluating transit capacity flexi-

bility at the network scale 205

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

7.2 Network capacity theory and literature . . . . . . . . . . . . . . . . . 208

7.3 Model design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

7.3.1 Passenger choice functions . . . . . . . . . . . . . . . . . . . . 217

7.3.2 Solution algorithm . . . . . . . . . . . . . . . . . . . . . . . . 220

7.4 Numerical experiment . . . . . . . . . . . . . . . . . . . . . . . . . . 224

7.4.1 Experiment design . . . . . . . . . . . . . . . . . . . . . . . . 224

7.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

7.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

8 Optimal location of shared workplaces with social objectives 237

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

8.2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

8.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

8.3.1 Facility location problem . . . . . . . . . . . . . . . . . . . . . 244

8.3.2 Modeling workplace choice . . . . . . . . . . . . . . . . . . . . 246

8.3.3 Modeling social objectives . . . . . . . . . . . . . . . . . . . . 249

8.3.4 Reformulation of quadratic objectives . . . . . . . . . . . . . . 254

8.4 Numerical experiment . . . . . . . . . . . . . . . . . . . . . . . . . . 256

8.4.1 Objective #1: Minimize travel distance . . . . . . . . . . . . . 260

8.4.2 Objective #2: Maximize shared workplace demand . . . . . . 261

8.4.3 Objective #3: Maximize interaction opportunities . . . . . . . 263

8.4.4 Objective #4: Maximize interaction opportunities between

lowest income quartiles . . . . . . . . . . . . . . . . . . . . . . 265

10



8.4.5 Objective #5: Minimize income segregation . . . . . . . . . . 266

8.4.6 Multi-objective model . . . . . . . . . . . . . . . . . . . . . . 267

8.4.7 Pareto frontier analysis . . . . . . . . . . . . . . . . . . . . . . 270

8.5 Policy implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

8.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

9 Conclusions and Recommendations 277

9.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

9.2 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282

9.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286

9.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

9.4.1 Empirical research . . . . . . . . . . . . . . . . . . . . . . . . 290

9.4.2 Methodological research . . . . . . . . . . . . . . . . . . . . . 293

9.4.3 Highlighted future research topics . . . . . . . . . . . . . . . . 299

A Remote work trends, plans and preferences (Chapter 3) 307

A.1 Current remote work shares . . . . . . . . . . . . . . . . . . . . . . . 307

A.2 Preferred remote work shares . . . . . . . . . . . . . . . . . . . . . . 312

A.3 Employer planned remote work shares . . . . . . . . . . . . . . . . . 318

B Details of travel behavior model inputs (Chapter 4) 335

C Sensitivity analysis for shared workplace locations (Chapter 8) 341

C.1 Changes in optimal solution by objective . . . . . . . . . . . . . . . . 342

C.2 Changes in performance measures by objective . . . . . . . . . . . . . 343

11



12



List of Figures

1-1 Remote work as a percentage of all worked days from 1965 to 2023 . 24

1-2 Remote work as a percentage of all worked days from 2018 to 2023 . 31

1-3 Comparing national averages of remote work as a percentage of all

worked days . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1-4 Co-citation map for articles on virtual work . . . . . . . . . . . . . . 43

1-5 Classifying six of the chapters in this dissertation by stakeholder and

research purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2-1 Distribution of remote work hours by location . . . . . . . . . . . . . 59

2-2 Remote work stakeholders and their relationships . . . . . . . . . . . 66

2-3 Conceptual actor-setting framework for classifying and describing re-

mote work research . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3-1 Work location split by worked hours (a) and number of work trips (b) 86

3-2 Third place use over time . . . . . . . . . . . . . . . . . . . . . . . . 87

3-3 Third place use by demographic group . . . . . . . . . . . . . . . . . 88

3-4 Third place use by household characteristics . . . . . . . . . . . . . . 89

3-5 Third place use by employment characteristics . . . . . . . . . . . . . 90

3-6 Third place use by task characteristics . . . . . . . . . . . . . . . . . 91

13



3-7 Third place use by attitudes towards coordinating with colleagues . . 92

3-8 Third place use by perceived benefits of remote work . . . . . . . . . 93

3-9 Trip duration by work location . . . . . . . . . . . . . . . . . . . . . 94

3-10 Average travel times by third place type (a) and home location (b) . . 95

3-11 Constraints preventing additional remote work (a) and percentage of

tasks that can be done remotely (b) . . . . . . . . . . . . . . . . . . . 96

3-12 Commuting mode shares from November 2021 to January 2023 . . . . 98

3-13 Reported transitions to and from sustainable commuting modes since

2019, by survey wave . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

3-14 Mode choice by work location, including (a) and excluding (b) driving 100

3-15 Non-work trips by remote work share (a) and frequency of non-work

trips by mode (b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3-16 Work trip departure time changes from 2019 to current . . . . . . . . 103

3-17 Departure times by primary work location . . . . . . . . . . . . . . . 103

3-18 Perceived change in efficiency during remote work relative to working

at EBP (a) and relative to expectations (b) . . . . . . . . . . . . . . 105

4-1 Flowchart illustrating the overall procedure for estimating third place

travel behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4-2 Distribution of observed remote work share, employee preferences for

remote work, and employer plans for remote work as a percentage of

total worked hours . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4-3 Flowchart illustrating the different components and data sources pro-

posed for estimating third place destination choices . . . . . . . . . . 136

4-4 Differences in third place use by occupation category . . . . . . . . . 137

5-1 Flowchart demonstrating the emissions estimation process. . . . . . . 152

14



5-2 Current, employee desired, and employer planned remote work loca-

tion distributions by cluster . . . . . . . . . . . . . . . . . . . . . . . 157

5-3 Carbon emissions for different commute-based travel demand scenarios 164

5-4 Changes in visits at census tract level between scenarios . . . . . . . 167

6-1 Example of the agent-request-trip-vehicle shareability graph . . . . . 184

6-2 Flow chart demonstrating the matching and passenger choice process 185

6-3 Spatial distribution of flexible work locations and visits . . . . . . . . 196

6-4 Sensitivity of total traveler utility and VMT to changes in location

capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

6-5 Sensitivity of total traveler utility and VMT to changes in the number

of colleagues that must be co-located . . . . . . . . . . . . . . . . . . 199

6-6 Sensitivity of the number of co-located employees to changes in the

associate benefit 𝑢max for a range of team sizes . . . . . . . . . . . . . 200

6-7 Sensitivity of total profit, profit without benefit and VMT to changes

in the associate benefit 𝑢max . . . . . . . . . . . . . . . . . . . . . . . 201

7-1 Map of the 2019 MBTA rapid transit network used as the basis for

the numerical experiment . . . . . . . . . . . . . . . . . . . . . . . . . 225

7-2 Comparison of the incumbent objective value over time for the itera-

tive and direct solution methods . . . . . . . . . . . . . . . . . . . . . 230

7-3 Distributions of optimal line frequency (𝑥𝑙) by transit capacity flexi-

bility metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

8-1 Locations of remote working hubs in the Irish government’s National

Hub network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

8-2 Optimal locations for Objective #1: Minimize travel distance . . . . 261

15



8-3 Optimal locations for Objective #2: Maximize demand . . . . . . . . 263

8-4 Optimal locations for Objective #2: Maximize demand . . . . . . . . 264

8-5 Optimal locations for Objective #4: Maximize interaction opportuni-

ties between lowest income quartiles . . . . . . . . . . . . . . . . . . . 266

8-6 Optimal locations for Objective #5: Minimize income segregation . . 268

8-7 Optimal locations for weighted objective . . . . . . . . . . . . . . . . 269

8-8 Pareto frontier for Objectives #1 (minimize travel distance) and #2

(maximize demand) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

A-1 Current remote work share by demographic group . . . . . . . . . . . 308

A-2 Current remote work share by household characteristics . . . . . . . . 309

A-3 Current remote work share by employment characteristics . . . . . . 310

A-4 Current remote work share by task characteristics . . . . . . . . . . . 311

A-5 Current remote work share by remote work policy . . . . . . . . . . . 312

A-6 Current remote work share by attitudes towards coordinating with

colleagues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313

A-7 Current remote work share by attitudes towards remote work . . . . . 314

A-8 Current remote work share by perceived benefits of remote work . . . 315

A-9 Current remote work share by life priorities . . . . . . . . . . . . . . . 316

A-10 Current remote work share by demographic group . . . . . . . . . . . 317

A-11 Current remote work share by household characteristics . . . . . . . . 318

A-12 Current remote work share by employment characteristics . . . . . . 319

A-13 Current remote work share by task characteristics . . . . . . . . . . . 320

A-14 Current remote work share by remote work policy . . . . . . . . . . . 321

A-15 Current remote work share by attitudes towards coordinating with

colleagues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322

16



A-16 Current remote work share by attitudes towards remote work . . . . . 323

A-17 Current remote work share by perceived benefits of remote work . . . 324

A-18 Current remote work share by life priorities . . . . . . . . . . . . . . . 325

A-19 Current remote work share by demographic group . . . . . . . . . . . 326

A-20 Current remote work share by household characteristics . . . . . . . . 327

A-21 Current remote work share by employment characteristics . . . . . . 328

A-22 Current remote work share by task characteristics . . . . . . . . . . . 329

A-23 Current remote work share by remote work policy . . . . . . . . . . . 330

A-24 Current remote work share by attitudes towards coordinating with

colleagues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

A-25 Current remote work share by attitudes towards remote work . . . . . 332

A-26 Current remote work share by perceived benefits of remote work . . . 333

A-27 Current remote work share by life priorities . . . . . . . . . . . . . . . 334

17



18



List of Tables

4.1 Summary of ZOIB regression results for remote work arrangement

preferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.2 Categories and recommended language for remote work-related ques-

tions that affect travel behavior . . . . . . . . . . . . . . . . . . . . . 126

4.3 Model estimation results for third place departure time . . . . . . . . 131

4.4 Model estimation results for third place trip frequency . . . . . . . . 132

4.5 Model estimation results for third place mode choice . . . . . . . . . 133

4.6 Characteristics that can be used to isolate third place trips . . . . . . 139

5.1 Input variables for work location choice model . . . . . . . . . . . . . 154

5.2 ZOIB regression results for the proportion of remote work . . . . . . 155

5.3 Average one-way commuting trip distance by work location . . . . . . 159

6.1 Conceptual table for the mobility and remote work analytical framework176

6.2 Notation for sets and set indices . . . . . . . . . . . . . . . . . . . . . 179

6.3 Notation for demand model . . . . . . . . . . . . . . . . . . . . . . . 179

6.4 Notation for supply model . . . . . . . . . . . . . . . . . . . . . . . . 180

6.5 Simulation Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 192

19



6.6 Ride-pooling platform performance with flexible destinations relative

to the non-flexible scenario by share of flexible passengers . . . . . . . 194

6.7 Ride-pooling platform performance with flexible destinations relative

to the non-flexible scenario by number of available destinations for

flexible passengers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

7.1 Optimal capacity flexibility results and computation times for the

MBTA network-based numerical experiment . . . . . . . . . . . . . . 229

8.1 Summary of potential objective functions for the shared workplace

location problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

8.2 MNL model estimation results for shared workplace choice . . . . . . 257

8.3 Remote work percentage of total worked days by income quartile . . . 259

8.4 Results for Objective #1: Minimize travel distance . . . . . . . . . . 262

8.5 Results for Objective #2: Maximize demand . . . . . . . . . . . . . . 263

8.6 Results for Objective #3: Maximize interaction opportunities . . . . 265

8.7 Results for Objective #4: Maximize interaction opportunities between

lowest income quartiles . . . . . . . . . . . . . . . . . . . . . . . . . . 267

8.8 Results for Objective #5: Minimize income segregation . . . . . . . . 269

8.9 Results for the multi-objective model . . . . . . . . . . . . . . . . . . 270

9.1 Summary of empirical research needs . . . . . . . . . . . . . . . . . . 294

9.2 Summary of methodological research needs . . . . . . . . . . . . . . . 300

B.1 Summary of travel behavior models . . . . . . . . . . . . . . . . . . . 335

B.2 Summary of endogenous variables for travel behavior models . . . . . 336

B.3 Exogenous variables included in ZOIB regression model . . . . . . . . 337

B.4 Exogenous variables included in the third place trip frequency model 338

20



B.5 Exogenous variables included in the third place departure time model 339

B.6 Exogenous variables included in the third place mode choice model . 340

C.1 Sensitivity of optimal location choices to changes in the estimated

workplace choice model coefficients . . . . . . . . . . . . . . . . . . . 342

C.2 Sensitivity of performance measures to changes in the estimated work-

place choice model coefficients . . . . . . . . . . . . . . . . . . . . . . 344

21



22



Chapter 1

Introduction

1.1 Background and motivation

In 2018, about 4.8% of all worked hours in the United States were conducted remotely

[1]. Consequently, the destination of nearly every work trip in the country was

pre-determined and routine. There had been a gradual rise in remote work over

the preceding years, inadequate communication technology, employer expectations,

social pressure, unproductive home working environments, and the simple behavioral

inertia resulting from decades of in-person work collectively presented a formidable

barrier to widespread adoption [2]. Then, in 2020, the COVID-19 pandemic forced

anyone who could potentially work at home to overcome these barriers in the space

of days or weeks. Remote work suddenly represented more than 60% of all worked

hours in the United States [3]. As the public health threat of the pandemic subsided

over the next two years, so did the share of remote work. Yet remote workers and

their employers, having internalized the benefits of remote work and developed new

habits, are almost certainly not returning to old in-person working norms. As of
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July 2023, about 30% of all worked hours occur remotely, a sixfold increase in the

remote work share relative to just five years earlier. The trends in remote work over

the past six decades are summarized in Figure 1-1.

Figure 1-1: Remote work as a percentage of all worked days from 1965 to 2023
Adapted from Barrero et al. [4]. Note: 1965 to 1975 data is from the American Historical Time
Use Survey, 1980 to 2019 data is from the American Community Survey, and 2020 to 2023 data
is from the Survey of Workplace Arrangements and Attitudes.

The result of the rise in remote work is that a major portion of work trips no longer

have a fixed destination or schedule. Remote workers may choose to work at home,

thus eliminating the need to travel entirely, or they may decide to travel to a coffee

shop for a change of scenery in the afternoon. As a result, the aggregate demand for

certain transportation modes has been dramatically curtailed; total public transit

ridership in the United States is 30% less than it was in 2019 [5]. Origin-destination
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patterns have also shifted, moving away from suburb-to-downtown trips and towards

trips within and between neighborhoods [6, 7]. Urban transportation systems funded

by user fees and tax revenue are now facing severe budgetary shortfalls, thus having

to reduce the services that they offer [8]. For example, Toronto Transit Commission

has recently announced a new wave of service cuts [9] due to a lack of operating

funds.

Remote work is more than a simple demand shock for urban transportation sys-

tems, like the suburbanization of U.S. jobs in the late 20th century that shifted

demand patterns between locations. It is a transformation of how individual travel

decisions are made. Every remote work day is an opportunity for people to choose a

different work location, the timing of their trip to that location, and the mode they

use to get there. Should I walk to the library in the morning to work on a high-

focus task in the morning? What about accepting an invitation to work at a friend’s

house in the afternoon to avoid yet another week of working at home alone? The

possibilities are endless, with many different and possibly competing considerations,

creating a significant cognitive burden for remote workers. Rather than basing er-

rands or social gatherings around work trips, work trips can now be chosen to make

running errands or social gatherings more convenient. Existing urban transportation

and land use systems must adapt to the new remote work demand patterns and

the new decision-making processes in order to remain viable and provide convenient,

affordable, and sustainable mobility services.

The relationship between transportation systems and society has also become

more complex. While transportation has always determined the set of feasible des-

tinations for any trip, people would make the necessary arrangements to travel to

and from their primary work location. Employees did not have the agency to choose

a new location to improve their productivity, or well-being, or change the people
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they encountered on their way to and from work. When working remotely, however,

individuals are generally responsible for their choice of workplace, which has many

secondary effects when aggregated at the societal level.

The decline of spontaneous in-person interactions between colleagues and strangers

due to working at home is thought to be inhibiting labor productivity [10]. The

diversity of social encounters has declined as people are less likely to leave their

neighborhoods when working remotely [11]. Finally, a looming commercial real es-

tate “apocalypse” [12], caused the rise of remote work threatens to empty downtown

cores of economic activity and vibrancy. By reshaping their operating and strate-

gic plans to meet the new demand for remote work at non-home locations, urban

mobility providers may help to mitigate some of these concerns raised by remote

work.

Fundamentally, remote work introduces a new dimension of flexibility into peo-

ple’s lives. They are take full advantage that flexibility to make new decisions about

where, when and with whom to work. That flexibility presents a complexity challenge

for travel demand modelers and transportation planners, who previously leveraged

the fixity of routine work trips to simplify their tools and decision-making. Yet the

flexibility afforded by remote work also means people have more discretion to adjust

their travel behavior in response to new transportation policies and service designs.

Up to this point, the development of evidence-based remote work policy has been

impeded by three major issues. First, recent research into the effect of remote work

on urban systems is often narrowly focused on the outcomes for a single stakeholder or

discipline. Studies typically do not consider effects outside of their discipline, despite

the impact of remote work on nearly every aspect of urban life. For example, studies

evaluating the decrease in commuting-related carbon emissions from remote work [13,

14, 15] typically ignore the associated increases in carbon emissions from residential
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buildings, not to mention the effects on productivity or worker well-being. It is also

difficult to compare findings from multiple studies due to their discipline-specific

terminology and standards for describing the problem settings. As a result, few

review papers explore the conflicting findings between similar remote work studies.

Second, there remains insufficient empirical evidence of the impacts of remote

work on travel behavior at a broad temporal and spatial scale, hindering efforts to

predict policy outcomes. As Jane Jacobs wrote, "City processes in real life are too

complex to be routine, too particularized for application as abstractions. They are

always made up of interactions among unique combinations of particulars, and there

is no substitute for knowing the particulars" [16]. The dynamics of remote work are

no different. Surveys with a broad geographic reach are expensive to distribute, and

synthesizing the results of multiple smaller surveys can be challenging or impossible

when the questionnaires and samples vary. Moreover, attitudes and policies towards

remote work have fluctuated substantially over time, preventing the comparison of

surveys issued mere months apart. Repeated surveys covering many different locales

are needed to understand how remote work practices are changing over time and how

they may evolve in the future.

Finally, remote work introduces complex behavioral dynamics that are not cap-

tured in existing models for designing and operating mobility systems. Decisions

about where and when to work are now made on a daily basis, resulting in a merging

of travel behavior with considerations related to productivity, fears of exposure to

illness, and family life. Old models of travel demand and land use allocation that

assume fixed work destinations are no longer reliable. There is also unmet demand

for mobility services that recognize and leverage the destination flexibility of remote

workers.

Resolving these three critical issues is necessary to support the development of ur-
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ban transportation and land use policies for sustainable and economically productive

cities in the remote work era.

1.2 General literature review

Each of the chapters of this dissertation contains a separate summary of the litera-

ture that is relevant to the specific problem addressed in the chapter. Nevertheless,

the intersection of remote work and urban mobility has been studied in some form

for many decades, and reviewing the history and broad scope of this body of research

in detail provides greater context for the overall motivation of this dissertation and

the gap that it is intended to address. This general literature review section is

therefore included to review remote work trends and summarize the state of the art

from four disciplines as they relate to remote work: travel behavior, transportation

science, land use and real estate, and organizational behavior. First, Section1.2.1

(Remote Work Trends) describes in detail the literature relating to aggregate remote

work adoption over time. Section 1.2.2 (Travel Behavior) includes the micro-level

decision-making processes and associated psychological factors that contribute to

travel choices regarding remote work. Section 1.2.3 (Transportation Science) focuses

on measuring the aggregate impacts of remote work on travel demand, and analyti-

cal models of transportation systems that explicitly incorporate remote work travel

behavior. There has been considerable speculation about the effects of remote work

on cities; these studies are summarized in Section 1.2.4 (Land Use and Real Estate).

Finally, Section 1.2.5 (Organizational Behavior) includes research related to individ-

ual and organizational attitudes towards remote work and how such arrangements

affect organizational outcomes.
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1.2.1 Context: the rise of remote work

Remote work has been proposed at least as far back as the 1950s, [17] and became

sufficiently popular by the 1980s to become the subject of several economic and

organizational behavior studies [18, 19]. Surveys of remote workers conducted around

this time imply some participation, but the phenomenon remained fairly uncommon

and difficult to measure [20]. Several social trends later contributed to the growth

of remote work. Advances in digital and communication technology enabled the first

truly remote workers; personal computers, the Internet, email, and eventually video

conferencing have progressively improved remote collaboration [21].

The number of people who worked at least one day per month at home in the

United States rose from 4 million in 1990 to 23.6 million in 2001 [22] as technology

continued to improve. New societal factors, such as increased globalization, the rise

of the “gig economy”, and online sales platforms, have made it easier to substitute

freelancing and self-employment for full-time salary work [23]. However, even in

2018, remote work represented only 5% of all worked days in the United States [3].

Then, in early 2020, the COVID-19 pandemic forced most workplaces to close

due to the risk of spreading the virus. By May 2020 over 60% of worked days in

the U.S. were taking place at home [3], a twelve-fold increase compared to the pre-

pandemic norm. Throughout the pandemic, employers began to reconsider their

long-term remote work policies. Much like the inertia that kept traditional in-person

work the dominant arrangement long after technology was sufficient to permit remote

work, the inertia of pandemic-related remote work has begun to increase the desire

for permanent full-time remote work. Many large employers, including Salesforce,

Facebook, and Google, have announced remote work policies that include full-time

remote options [24].
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The degree to which remote work will remain after the public health threat of

COVID-19 has subsided has been the subject of a lot of speculation and survey efforts.

Chapter 3 presents a comprehensive breakdown of current and future remote work

trends based on primary survey data collected for this dissertation. Other surveys

vary in methodology and timing, making the results difficult to compare. Barrero

et al. [3] conducted a comprehensive longitudinal survey of 22,500 working-age Ameri-

cans between May 2020 and November 2020. The survey found that employers intend

for 26.6% of all worked days to take place remotely going forward (see Figure 1-2),

while the average worker would prefer remote work 47% of the time. A PwC survey

of 1,200 U.S. workers around the same time found that, on average, workers would

prefer 56% of their workdays to be flexible after COVID-19 has passed [25]. The

employer intention results from [3] are similar to a survey of HR professionals and

hiring managers conducted in April 2020 [2]. The results are heterogeneous across

job sectors, income levels, and gender, suggesting that the benefits and impacts of

remote work will not be shared evenly. Surveys have also found a racial difference

in the desire to return to the office full-time [26].

Surveys issued in 2021 and later have often found a greater preference for remote

work than those issued early in the pandemic. A Harvard Business School survey

of 1,500 U.S. professionals in March 2021 [27] found that 88% would prefer at least

2 days per week of remote work. In their longitudinal survey from May 2020 to

March 2021, Barrero et al. [3] has found that the number of people who want only

remote work has increased over time. Preferences for remote work may be growing

as a return to the office becomes more realistic and workers begin to consider the

downsides (commuting, etc.) more closely. People may also have become more

comfortable with remote work and virtual communication over time. Finally, it may

be that people began to enjoy the additional location choices provided by remote
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Figure 1-2: Remote work as a percentage of all worked days from 2018 to 2023
Adapted from Barrero et al. [3]. Note: Pre-COVID share is based on the 2017-2018 American
Time Use Survey; post-COVID share is the share anticipated by employers. The break in the
series in November 2020 reflects a change in the survey question.

work as pandemic-related restrictions on travel, retail outlets, and social gatherings

were lifted.

Employees in certain sectors of the economy, typically service and knowledge work

sectors, appear to value remote work more than the average worker. Surveys of staff

at higher education institutions have found a significant preference for remote work;

in December 2020 Duke University found that staff would prefer remote work for

70% of working days, with 91% of respondents preferring more than 1 day of remote

work [28]. Boston University [29] and the University of Michigan [30] found similar

trends for their workforces. Technology company executives surveyed in September
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2020 indicated that, on average, 34% of their employees will have entirely remote

work after the pandemic [31].

Global surveys have been less common than US-based surveys, but there have

been several notable examples. Boston Consulting Group collected responses from

209,000 people across 190 countries in October and November 2020 [32]. The study

finds that, like many of the US studies, approximately 9 in 10 workers would prefer

remote work at least 2 days per week. The higher preference for remote work among

knowledge and office workers is also observed globally. Interestingly, the study finds

that workers in less developed countries are most interested in remote work and

hypothesize that this could be due to differences in relative transportation costs.

A December 2020 - January 2021 international survey by McKinsey found that, on

average, corporate and government workers preferred 52% of their days to be flexible.

Workers in Latin America and Australia favored remote work the most, while workers

in Asia and Europe were least interested [33]. A survey of approximately 200 workers

in India found that the share of people with at least one day of remote work is

expected to double as a result of the pandemic, from 34% to 76% [34].

In the most comprehensive effort to compare national trends in remote work, Ak-

soy et al. [35] surveyed between 700 and 2,500 respondents in 34 different countries in

the Spring of 2023. The results are visualized in Figure 1-3. They find that English-

speaking countries have adopted the greatest share of remote work, with Canada

and the United Kingdom leading the way among sampled countries. Asian countries

average about one-half of the amount of remote work of their English-speaking coun-

terparts, while Europe, Latin America, and South Africa are somewhere in between.

Even the countries in this survey with the lowest remote work uptake, such as Greece

and South Korea, are now working remotely more than twice as much (as a share

total worked days) than the United States did in 2018.
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Figure 1-3: Comparing national averages of remote work as a percentage of all
worked days
Adapted from Aksoy et al. [35].

1.2.2 Travel behavior

Remote work was a popular research topic in the 1990s and several discrete choice

models were estimated based on survey responses. Bagley and Mokhtarian [36] and

Stanek and Mokhtarian [37] conducted surveys of California workers to obtain pref-

erences for working from home and a remote work center. Mokhtarian and Salomon
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[38] found that attitudes towards work, family, and commuting are more important

than sociodemographic factors in determining preferences toward remote work. This

is similar to the results from Vana et al. [39]. In addition to estimating a discrete

choice model, Yeraguntla and Bhat [40] offers a taxonomy of remote work arrange-

ments. Given that telecommunication technology was not very mobile at the time,

the authors only considered two remote work locations: home and a regional tele-

working center.

Pouri and Bhat [41] includes several occupational factors in a remote work choice

model, finding that part-time workers and employees of private companies are more

likely to choose remote work, while those requiring daily face-to-face interactions are

less likely to choose remote work. Sener and Bhat [42] also included work charac-

teristics in estimating a copula-based sample selection model using household travel

survey data from Chicago. Tang et al. [43] and Singh et al. [44] review the impact

of the built environment on the propensity to work from home, and confirms the

existence of several nuanced effects, such as greater perceived regional accessibility

leading to less frequent remote work. Arabikhan [45] demonstrates that a fuzzy rule-

based network, rather than the traditional discrete choice framework, can improve

the modeling of remote work adoption.

While these discrete choice studies were being conducted, there was also an effort

to develop a behavioral theory to explain the rationale behind the observed deci-

sions. In a remarkable series of papers, Mokhtarian and Salomon create a conceptual

model to explain the desire for remote work in terms of constraints, attitudes, per-

sonal satisfaction, and utility [46, 47, 48]. van Wee and Witlox [49] point out that

many traditional travel behavior concepts (utility theory, social practice theory, time

geography, and theory of planned behavior) would predict a significant increase in

remote work after COVID-19 due to increased familiarity with virtual communica-
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tion tools and lasting changes in social norms. The authors recommend research into

policy responses for long-term changes in activity and travel behavior as a result of

the COVID-19 pandemic.

Much of the effort in modeling remote work decisions has focused on the frequency

and duration of remote work, rather than the location and the choice to co-locate

with others [50, 51]. This is partly due to implicit assumptions that remote workers

are making a binary choice: work at an office or work from home. Even recent

comprehensive frameworks that include the duration of remote work do not consider

location choice or the impact of personal relationships [52, 53, 54]. While anecdotal,

recent interviews with remote workers in the New York City area found that many

enjoy working from non-home, non-work locations for increased productivity and "a

change of scenery" [55]. This suggests a latent demand for alternative work locations

that may become more prevalent as the COVID-19 related restrictions on travel and

group activities begin to ease.

1.2.3 Transportation science

Even when remote work (known at the time as “telework”) was in its infancy, Harkness

[56] hypothesized that the adoption of remote work could have significant impacts

on transportation systems. Remote work has long been of interest to transportation

researchers, but most of the literature is focused on empirical studies rather than

analytical models that connect remote work and transportation.

A seminal report by Mokhtarian [57] and a review by Nilles [58] provide a good

summary of early empirical research. Mokhtarian is a pioneer in this field of study,

publishing dozens of influential papers over several decades [60, 61, 62, 63, 64, 51, 59].

From the very beginning, they identified the need for remote work to be incorporated
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into travel demand models [65]. More recent empirical research includes studies of

how remote work has affected road congestion in Australia [66], Norway [67], Iran

[68], and Sweden [69].

In addition to the aggregate impact on travel, researchers have also investigated

differences in travel patterns between flexible and traditional workers. Interestingly,

Hong [70] finds that home-based remote workers are less likely to travel during the

morning rush hour, but often travel during the evening rush hour. A more recent

paper found similar trends for knowledge workers in the United States [71]. This

suggests that remote workers are generally sticking to typical work schedules, and

are eager to pursue non-work activities after they have finished work. These results

could have a significant impact on transportation providers, as the effect of remote

work on peak demand may not be symmetric. Handy and Mokhtarian [63] notes

that the popularity of remote work and its effect on travel demand is related to

many other travel demand management policies, including congestion pricing, office

parking subsidies, and zoning.

The impact of remote work on non-work travel behavior has long been debated.

Early research finds that the average number of trips on remote work days increases,

but the distance traveled decreases [72]. A Ph.D. thesis analyzing U.S. travel behavior

data from 1995 confirms these results and finds that remote workers and their families

have a greater average annual travel distance [70]. Recent articles have found that

there is more daily travel overall for remote workers in the United States [73, 74, 75].

On the other hand, Choo et al. [76] finds that remote work has little-to-no impact

on overall vehicle-miles traveled in the United States; de Abreu e Silva and Melo

[77] encounters a similar result for single-household workers in the United Kingdom.

Kim et al. [78] finds that non-work travel is higher for Korean families whose primary

breadwinners can work remotely, but only if there are fewer vehicles than employed
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adults in the household.

de Abreu e Silva and Melo [73] finds that part-time remote workers have a longer

average commute and are more likely to commute by private car, leading to more

travel overall and less sustainable travel choices. Ory and Mokhtarian [79], however,

suggests that the decision to move further from work tends to precede the start of

any part-time remote work, while those who move after beginning part-time remote

work actually move closer to their workplace. Salomon and Mokhtarian [80] argues

that the differences in results are often due to heterogeneity among remote workers,

as well as a lack of consistency in defining remote work and in survey methodology.

The opposite effect, whether discretionary trips affect the decision to choose re-

mote work, has also been investigated [81]. The authors find that people with the

option for remote work are more likely to do so on days when they plan a discretionary

activity, and the length of the discretionary activity is predictive of the decision to

engage in a full day of remote work.

Despite the evidence of different travel patterns, relatively few models that in-

corporate the effects of remote work on urban transportation systems have been

developed. Two seminal papers in modeling the transportation impacts of remote

work, Nagurney et al. [82, 83], provide an equilibrium traffic flow model formulation

and solution method that includes the option of teleworking from multiple alterna-

tive destinations. The authors introduce virtual links to the network to represent

the teleworking alternatives. Pawlak et al. [84] also allows for teleworking in their

comprehensive econometric model of the joint choice of activity, duration, mode, and

route. Similarly, De Graaff and Rietveld [85] incorporates the preference for working

at home or out of home directly into the utility function to estimate the trade-off

between the two working arrangements.

One paper was found that includes the simulation of a transportation system
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with remote work locations [86]. The authors use an agent-based regional travel

demand model to evaluate the effect of remote workplaces on commuting distances.

Interestingly, they find that requiring the co-location of teams can lead to worse

outcomes than the status quo under certain conditions. The study does not include

any mathematical modeling or productivity considerations, however.

Finally, there have been some efforts among transportation researchers to develop

analytical models for the long-term impacts of the COVID-19 pandemic on trans-

portation demand. Zhang and Zhang [87] uses an urban equilibrium model to predict

the effect of various post-pandemic policies on long-term mobility in China. The au-

thors find that while remote work produces more sustainable mobility outcomes,

these effects are largely negated if shared mobility (public transit and car sharing)

becomes less popular. Habib and Anik [88] use an integrated land use model to

estimate that car ownership and commuting distance could be expected to increase

as a result of the pandemic.

1.2.4 Land use and real estate

Transportation and land use are intrinsically linked, so it is important to consider

how changes in mobility patterns due to remote work can impact the built environ-

ment, and vice versa. The US Department of Transportation has been interested in

remote work as a travel demand management strategy for some time; in the 1990s,

the department funded the establishment of Residential Area-Based Offices (RABO),

a precursor to co-working spaces, to reduce the air pollution associated with com-

muting [89]. Mokhtarian has been arguing for land-use policies that encourage co-

working centers in residential and mixed-use developments since the 1990s to reduce

commutes [51].
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Saxena and Mokhtarian [90], in an early pilot study, found that remote workers

visit destinations that are both closer to home and more even distributed geograph-

ically on days that they work from home compared to days that they commute to

an office. These results were confirmed by Asgari et al. [91] for the New York City

area. This suggests a re-alignment of demand away from commuting corridors and

commercial districts towards residential areas and neighborhood centers. A recent

paper also found similar results using the National Household Travel Survey, noting

that remote workers have more complex and varied schedules and that they visit

more locations than regular commuters [75]. The authors note that remote workers

remain at home on only 20% of work days, and often chose to work in a location

outside the home.

Another related area of research is modeling job accessibility in a partially flexible

environment. Muhammad et al. [92] introduces virtual spaces into the accessibility

modeling framework and finds that remote work increases job accessibility overall,

with greater benefits in rural areas. Several subsequent papers by many of the same

authors explore this area in greater detail [93, 94, 95].

Theoretical models of urban economies generally suggest that increased remote

work will lead to decentralization, with areas located at a medium distance from

urban centers experiencing the greatest increase in demand [96, 92]. Helling and

Mokhtarian [97] argues that this is because remote work makes accessibility less

important in choosing a housing location. Decentralization has not been borne out

thus far; urbanization has generally continued in developed and developing countries,

even as the share of remote work has risen in recent decades. It could be that other

factors have emerged that exert a stronger pull towards urban life, or perhaps remote

work as a share of the economy has yet to reach the activation energy required for

the decentralization effect to take hold.
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remote work may reduce the demand for traditional offices and the demand for

travel during peak hours, freeing up commercial space and transportation infras-

tructure for alternative uses [98]. A survey of workers in Montreal, Canada found

that those working in the central business district pre-COVID expect the highest

degree of remote work in the future, suggesting that demand for prime urban office

space could be reduced [99]. Rosenthal et al. [100] finds similar effects by studying

U.S. commercial real estate prices, noting a decline in the premium for centrally-

located office space. The authors also point out that the effects are larger in dense,

transit-oriented cities than in car-oriented cities. On the infrastructure side, experts

have argued for prioritizing safe and sustainable modes such as cycling and public

transport rather than returning to the pre-pandemic status quo of private vehicle

dominance [101].

A shift in working arrangements towards co-working spaces could provide new

benefits, especially in smaller communities. Mariotti et al. [102] surveys co-working

space users in Italy and finds that 85% believe the co-working space has a posi-

tive impact on their community by hosting cultural events, purchasing from local

services, and improving security. These impressions were stronger for co-working

spaces located outside of major metropolitan areas. Policymakers in certain Euro-

pean countries had begun to promote co-working spaces in peripheral areas in order

to boost economic development and reduce commutes [103].

1.2.5 Organizational behavior

Organizational behavior is a critical component of remote work. As stated by Brewer

and Hensher [104], “Individual work arrangements are influenced by the internal con-

straints of organizations such as organizational structure and managerial policies,
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including human resource management, work organization, and external constraints

such as union policies and agreements.” The authors go on to provide an excellent

overview of how organizational behavior affects travel behavior and offer a call to

action for additional research into the links between the two fields. Their work builds

on previous work by Brewer [105], who notes that remote work requires both willing-

ness and capacity from employers. Technological advances since the publication of

that research may have increased the capacity of employers to facilitate remote work,

but willingness remains mixed. A 2001 study of employers in Belgium found that the

barriers to remote work adoption were largely institutional rather than technological

[106].

Handy and Mokhtarian [65] provides a good summary of early corporate resis-

tance to remote work, which includes concerns about productivity, supervision, and

morale loss due to “officelessness”. In an interesting reversal of the remote work

choice models described earlier, Yen et al. [107] use a survey to elicit the factors that

contribute to employers’ decision to approve remote work. The study finds that

employers desire a smaller amount of remote work than their employees prefer, much

like the post-pandemic surveys issued nearly 30 years later. The primary concerns

from employers were employee productivity, morale, and communication.

Empirical studies of remote worker attitudes have shown several interesting rela-

tionships. Koh et al. [108] find that remote workers generally perceive higher support

for work-life balance from their employer. A meta-analysis of studies on remote work

[109] and organizational outcomes found that remote work is perceived to “increase

productivity, secure retention, strengthen organizational commitment, and to im-

prove performance within the organization.” Coenen and Kok [110] confirmed these

results in a subsequent study. Girit [111] surveyed flexible and traditional workers

to compare personality traits, attitudes, and performance. The survey found that

41



remote workers had higher performance scores and job satisfaction than those who

worked in an office full-time. Surprisingly, remote workers considered themselves to

be more extroverted than office-based workers, despite preferring a working arrange-

ment with less face-to-face interaction. Studies conducted during the COVID-19

pandemic find that the relative productivity of remote workers is dependent on job

characteristics and the suitability of the home environment for work [112, 113].

On the employee choice side, Mokhtarian and Bagley [114] find that personal ben-

efits and work effectiveness were two significant motivating factors in the decision

to choose a workplace between home, a remote work center, and a primary office.

Similarly, Laumer and Maier [115] shows that household characteristics, including

the suitability of the home for work activities, are an important determinant in the

decision to work from home or elsewhere. Shafizadeh et al. [116] examines the con-

ditions under which remote work is advantageous for the employee, the employer,

and society writ large. The authors find that remote work is a net positive for em-

ployers when employee productivity does not diminish due to remote work and when

employers can translate remote work policies into real estate savings. Bernardino

and Ben-Akiva [117] uses a comprehensive model of both employer and employee

considerations to determine that remote work has the potential to improve employee

lifestyle and productivity, but less potential to reduce employer costs. Choudhury

et al. [118] finds that workers with the flexibility to relocate (“work from anywhere”)

are more productive than remote workers who visit a central office semi-regularly.

In an extremely comprehensive review of the literature related to “virtual work”,

Raghuram et al. [119] identifies a tremendous number of research gaps related to re-

mote work arrangements, teamwork, and technology. The authors create a citation

map of existing literature in these areas, finding that “telecommuting” research is a

distinct cluster containing very few co-citations with other organizational behavior
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articles (see Figure1-4). Studies related to the effects of remote work on employ-

ees and their employers are summarized; employees with remote work arrangements

generally feel more empowered and less stressed, but also more isolated from their col-

leagues and less self-identification with their organization. A case study of Microsoft

employees working remotely before and after the onset of the COVID-19 pandemic

found that collaboration became more static and sharing information became more

difficult after the switch to remote work [120].

Figure 1-4: Co-citation map for articles on virtual work
From [119]. Red: Telecommuting; Green: Computer-mediated work; Blue: Virtual teams;
Yellow: Distributed teams; and Pink: Team dynamics. Each node is an article and the size of
the node indicates the frequency with which the article has been co-cited with another article
in the map. The distance between the nodes shows the strength of the relationship between
two co-cited articles.

Co-working spaces have recently become a flexible option for employers who are

growing rapidly or who prefer not to sign a long-term lease. As opposed to working

at home, co-working spaces do not require investment in a home office, avoid the

potential distractions of home-based work and allow interaction with colleagues or

people from other organizations. Ross and Ressia [121] and Gandini [122] review the

literature on co-working from an organizational behavior perspective, including the

positive externalities of idea flow between co-located firms.
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One of the key limitations of the state of the art is understanding how and why

people choose between alternative locations for remote work (i.e. at home, a co-

working space, a café). Furthermore, preferences for remote work associates are not

well studied. It has been shown that social relationships developed at work can

affect commuting patterns [123], so it is likely that these relationships would also

affect location choices if multiple alternatives are available.

1.3 Research questions and objectives

This dissertation addresses three broad and consequential research questions, moti-

vated by the urgent need for policy to adapt urban mobility systems to the recent

rise of remote work.

Question 1: How will the recent rise in remote work affect current and

future travel demand patterns in urban areas? While several recent studies

have investigated elements of this question, there remains considerable uncertainty

regarding key travel behavior elements. One notable gap is destination choice for

remote workers; most previous studies assume that all remote work takes place at

home and therefore do not explore the alternative work locations that have proven

popular thus far. Understanding how travel behavior such as mode choice and depar-

ture time change when traveling to different types of work locations will be critical

in determining the set of optimal adaptation strategies. Connecting remote travel

patterns to different personal factors such as household characteristics, employer

policies, and attitudes will also be necessary to model policy effectiveness across a

range of possible future scenarios.

Question 2: How can remote work stakeholders use this information to

design an efficient and environmentally sustainable transportation system
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that enables an economically productive urban future? This is perhaps the

most important of the research questions; the information collected in response to the

previous question has little value if it cannot be used to inform decisions. Translating

knowledge into action requires new models of transportation and land use systems.

The models must accurately represent the dynamics of the system involved, including

a realistic set of design, operating, or policy decisions on the part of the stakeholders.

Finally, the model must be tractable when applied to realistic problems.

Question 3: How can academic research help to build a consensus

approach to remote work policy across jurisdictions? Despite three years

of evidence and experience, there is still little agreement from public officials about

whether remote work should be encouraged, tolerated, or banned entirely. The first

step in resolving this research question will be to identify the barriers that make it

difficult to translate existing research into policy. Then, a new approach to remote

work research must be developed to create the conditions for future evidence-based

remote work policy.

The overall objective of this dissertation is to provide new evidence and tools for

urban transportation policy design in the remote work era. Seven concrete research

objectives were developed to answer the research questions above and therefore guide

the dissertation toward the larger goal:

1. Determine how remote work has affected the spatial and temporal distribution

of demand for transportation in urban areas.

2. Given the uncertainty surrounding the future of remote work, evaluate the

travel demand impact of different scenarios.

3. Create the analytical tools to adapt the design and operation of urban trans-
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portation systems to the new demand dynamics introduced by widespread re-

mote work.

4. Identify opportunities for transportation-related policies that leverage remote

work to foster sustainable and economically productive cities.

5. Illustrate the application and benefits of specific policies through the use of

realistic case studies with historical data.

6. Design conceptual tools for connecting remote work research to policymaking.

7. Set a direction for future remote work research.

The first two research objectives seek to answer Research Question 1 by provid-

ing evidence of changes in travel patterns and predicting future behavior based on

historical data. Research objectives 3, 4, and 5 are related to the second research

question. Collectively, these three specific objectives design innovative new methods

for adapting urban mobility systems to remote work, then evaluate their societal out-

comes. The final two research objectives are intended to resolve the problem posed

by the third research question.

1.4 Methodology and dissertation structure

This section describes the approach that the remaining chapters of this dissertation

take in order to achieve the stated research objectives. In general, the chapters of

this dissertation are organized by their contribution to preparing urban mobility for

the future of work. Chapter 2 is aimed at laying a theoretical foundation for the

subsequent chapters. It clarifies the terminology used to describe remote work and

prepares a consistent framework for describing remote work studies. Chapters 3-5
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provide empirical evidence for the rise of remote work and the resulting impacts on ur-

ban systems, and use the data to predict future travel patterns. Finally, Chapters 6-8

incorporate the travel behavior prediction models to develop new optimization meth-

ods that can inform the design and operation of urban transportation and land use

systems. Chapter 9 offers conclusions, discusses the broader policy implications of

this research, and provides possible directions for future research in this area.

Each of the empirical and methodological chapters (i.e. Chapters 3 to 8) fits

into a classification structure for remote work studies based on the primary stake-

holders involved and the purpose of the research. The purpose of the research could

be 1) “descriptive”, intending to describe an existing remote work phenomenon, 2)

“predictive”, using data and modeling to predict future trends and outcomes, or 3)

“prescriptive”, offering recommendations for action by one or more remote work stake-

holders. Figure 1-5 illustrates this structure using a table where the rows represent

the research purpose and the columns represent different stakeholders.

The six chapters are mapped to the appropriate cell within the table. Several

chapters have implications for multiple stakeholder groups. For example, Chapter 8,

which presents an optimization model for locating shared workplaces, provides tools

that can help cities adapt to remote work, but the spatial distribution of remote

working hubs also affects remote workers, employers and mobility providers. For

clarity, each chapter is classified under the “primary” stakeholder in Figure 1-5.

The breadth of this dissertation is evidenced by the fact that there is at least

one chapter dedicated to each of the four stakeholders and each of the three research

purposes. They do not cover all of the possible study types; the empty cells are likely

to be promising directions for future research. Chapter 2 is more conceptual in nature

and spans all stakeholders, therefore it does not fit neatly into this classification

structure.
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Figure 1-5: Classifying six of the chapters in this dissertation by stakeholder and
research purpose

1.4.1 Chapter 2: Motivation and theory

Chapter 2 is informed by a need for holistic, interdisciplinary remote work research.

It postulates that two major issues that prevent recent remote work studies from

being translated into public policy: the narrow, discipline-specific scope, and a lack

of structure for describing the research context. To encourage interdisciplinary col-

laboration, a common taxonomy for remote work stakeholders, arrangements, and

policies is proposed. Then, it presents a new conceptual framework for classifying

and describing general remote work studies.

This chapter was inspired in part by Powell [124], in which a unified framework is
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developed for a wide range of sequential decision problems. Any unified framework for

an entire subfield of research (i.e. remote work) would necessarily be too general to be

used in practice. However, many of the components, such as a common terminology,

a map of relevant stakeholders, and a structure for describing research problems,

are needed to facilitate cross-disciplinary collaboration. Such tools are especially

important given the relatively recent explosion of interest in the field, and the lack

of consensus around terminology. The first step uses conceptual diagrams, as shown

in Figures 2-3 and 2-2, to identify relationships and group related elements of the

framework together. Both the taxonomy and framework are referred to throughout

the remainder of the dissertation. Together, these contributions will help to mitigate

ongoing issues with remote work studies and lead to a more holistic body of research.

1.4.2 Chapters 3-5: Empirical evidence

Chapter 3 presents a comprehensive analysis of descriptive statistics about remote

work and travel behavior from the monthly U.S. Survey of Working Arrangements

and Attitudes (SWAA). The SWAA provides an extremely rich, ongoing source of

data on remote work trends and associated travel behavior. The survey’s travel

questions were introduced specifically for this dissertation research. The results

demonstrate the variation in mode choice, departure time, commute travel time,

and frequency of travel in socioeconomic, geographic, and employment groups. The

use of third places by remote workers and the key differences between third place

commuting and traditional commuting are discussed in detail.

When this research began, there was considerable uncertainty about the future

of remote work; it was not clear if remote work was a transitory fad or a long-term

realignment of work arrangements. As a result, it would not have been appropriate to
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base adaptation strategies on revealed preference data, as those preferences may have

been constrained by pandemic-related activity restrictions, employer policies, and so

on. Stated preference surveys were, therefore, the best opportunity to collect data on

the future preferences, personal characteristics, and attitudes of remote workers every

month. Distributing the survey online through an existing platform was deemed the

most efficient method for collecting the data and this research ultimately benefited

from collaboration with the research team behind the original survey.

There are some limitations to online data collection that were addressed to the

extent possible. The first is that the survey sample is unlikely to be representative

of the population. The samples are therefore weighted to match the United States

population based on age, sex, education, and income. In addition, the responses

cannot be independently verified. Several attention-check questions were used to

filter out poor-quality responses. The questions were designed very carefully with

the help of experts to limit any misinterpretation by the respondents. Finally, the

aggregate remote work trends elicited from the survey were validated through com-

parison against the results of similar surveys. Detailed information on the survey

methods is available in Section 3.3.

Moving from data collection to prediction, the next two empirical chapters rely on

many traditional travel behavior modeling techniques. Methodological and practical

advances for applying these techniques to the travel behavior of remote workers are

summarized in Chapter 4. The advances are then applied to several case studies in

Chapters 5 (as well as the methodological chapters 6 - 8). Discrete choice methods

are used in this dissertation to model the following travel behavior decisions:

• Travel mode

• Work location
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• Departure time

• Commute frequency

The classical multinomial logit (MNL) model [125] is applied for each of these

choices. The ordered version is used in the special case of commuting frequency,

which is an ordinal variable. Although other, more advanced discrete choice models

have been developed for travel behavior analysis in recent years, methodological

innovation in discrete choice modeling is not the emphasis of this dissertation. The

simplicity and interpretability of the MNL model allow the methods and case studies

to focus on the central topic of this dissertation: the unique travel behavior dynamics

of remote work. The methods proposed in each case study were intentionally designed

to permit more complex discrete choice model structures if desired.

Using the survey data described in Chapter 3, Chapter 4 shows how to address

the complexities introduced by remote work when designing travel behavior models.

The first complexity is the mixed discrete-continuous nature of remote work pref-

erences, which is resolved through the use of ZOIB regression. The second is the

influence of employer policies, working arrangements, and household variables on

travel decisions. The final complexity is the need to model flexible destinations for

work trips. Chapter 4 demonstrates how model design and large-scale mobility data

can be used to overcome these issues. An extended case study, focused on estimating

the characteristics of work trips to third places, is used to illustrate the benefits of

the methods described in this chapter.

Chapter 5 builds on both previous empirical chapters to determine how changes in

individual travel behavior due to remote work have affected overall carbon emissions

from commuting. ZOIB regression, k-means clustering, and a data-driven destination

choice estimation model are used to predict changes in commuting travel patterns
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after the rise in remote work. The results of a Chicago-based case study highlight

how commuting to third places has become a major component of carbon emissions

from commuting. The disaggregate nature of the model also produces estimates of

changes in commuting trips to each census tract and how commuting patterns might

evolve in the future.

1.4.3 Chapters 6-8: Methodological innovations

The final three research chapters apply operations research methods to optimize

urban mobility systems given predicted travel patterns. This is where the major

methodological contributions of the paper occur; the emerging behavioral dynamics

of remote work require new model designs and solution methods. More specifically,

the methodological advances in Chapters 6 through 8 focus on integer linear pro-

gramming problems. Each chapter solves the issue of linearizing non-linear travel

behavior functions, such as the MNL model, using different approaches. The behav-

ior functions can then be introduced into the larger system optimization problem

without sacrificing overall tractability.

Chapter 6 addresses the needs of one type of urban mobility service: ride-hailing

platforms. Unlike traditional work trips, remote workers have the flexibility to choose

from a set of possible work locations. This chapter imagines a new ride-hailing service

that takes advantage of the flexibility of remote work trips to improve the efficiency

of matching in ride-pooling trips. It introduces a new optimal passenger-vehicle

matching model that incorporates flexible destinations, as well as the constraints

and incentives that remote workers may face concerning destination choice. A case

study of ride-hailing demand in Manhattan, New York is used to evaluate the overall

performance of the ride-hailing service with flexible destinations.
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Chapter 7 pivots to another urban mobility service: public transport operators.

Remote work has had a tremendous impact on public transit ridership patterns by

eliminating or shifting many traditional commuting trips. The capacity for public

transit systems to adapt to shifting travel patterns has historically been difficult to

estimate at the network scale. This chapter develops a new mixed-integer program-

ming model and solution algorithm for the “transit capacity flexibility” problem that

incorporates more realistic passenger dynamics than the status quo and is sufficiently

tractable to solve network-scale problems for the first time in literature. The tran-

sit network in Boston, Massachusetts is used in a numerical experiment to test the

model. It is determined that the hub-and-spoke network topology of the network

is effective in handling traditional transit ridership patterns to and from the down-

town core, but the capacity of the network is reduced if passengers begin to favor

destinations outside of downtown.

The final methodological chapter, Chapter 8, addresses land use adaptation for

remote work. As noted in Chapter 3, many remote workers are choosing to work

at third places. However, land use has not yet evolved to make third place trips

more convenient. As a result, many governments are beginning to consider policies

to encourage new shared workplaces in the era of remote work. Chapter 8 designs

an innovative new facility location model for shared workplaces with objectives that

capture the social externalities of remote work. Using Boston as a case study, optimal

locations are selected for a variety of goals including minimizing travel, maximizing

workplace usage, and minimizing social isolation.

The case studies in these chapters make heavy use of the SWAA data and other

data sources such as mobile phone visitation data, census demographic and popula-

tion data, and public transit network schedule data as necessary. The data sources

are cited and described in appropriate detail in their respective chapters.

53



1.5 Related publications

Each of the original research chapters of this dissertation has been adapted for pub-

lication as a journal article. Due to the recent nature of many of the papers and the

duration of the peer review process, most of the articles remain under review dur-

ing the submission of this dissertation. Chapters 2, 3, 4 and 5 are the foundations

for Caros and Zhao [126], Caros et al. [127], Caros and Zhao [128] and Caros et al.

[129], respectively, all of which are currently under review. Chapter 6 is the basis for

Caros and Zhao [130], which has been published in Transportation Research Part D:

Transport and Environment. Chapter 7 is the basis for Caros and Zhao [131], which

is under review, and Chapter 8 is the basis for Caros and Zhao [132], which is also

under review.
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Chapter 2

An interdisciplinary approach to

remote work and urban policy

2.1 Introduction

The newfound freedom for millions of remote workers to choose whether and where

to commute has created the need for essential connections between academic disci-

plines, such as urban planning and organizational behavior, that have historically

had little overlap. The studies that do exist often focus on a particular topic of

interest (e.g. travel demand) and ignore the implications for another (e.g. labor

productivity). Smart public policies, corporate strategies, and infrastructure invest-

ments informed by academic research will be necessary to enable human flourishing

and liveable, sustainable cities in the era of widespread remote work. By identify-

ing new trends, proposing a new taxonomy and common framework for describing

remote work settings and stakeholders, and identifying promising opportunities for

future cross-disciplinary research, this article is intended to be the first of many steps
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toward evidence-based remote work policy.

Widespread remote work has disrupted many features of urban life: traffic con-

gestion, corporate workflow design, city center retail, and real estate markets, to

name a few. American employers are planning for the share of remote work hours

in 2023 and beyond to increase by a factor of six compared to 2018 levels [3]. Dis-

ruptions to historical behavioral patterns are not inherently problematic. Remote

work, when conducted at home, eliminates the need for what is often a long pri-

vate vehicle trip during the periods with the greatest traffic congestion. As a result,

many cities have experienced a reduction in transportation-related carbon emissions

[133] and a flattening of peak travel demand [134]. Employees benefit as well; less

time spent commuting has allowed remote workers to spend more time on leisure

activities, childcare, and household maintenance [3]. Remote work does present ma-

jor challenges for many urban systems, however. Public transportation revenue and

retail activity remain well below their 2019 levels as a result of fewer commutes to

the downtown core [135, 136]. Office vacancy rates have more than doubled in many

large cities as people choose to work from home or third places more frequently, lead-

ing to sharp drops in urban commercial real estate valuations [137]. In the absence

of new policies to sustain and adapt these systems for the remote work era, cities

are likely to continue to face severe financial challenges and the possibility of cuts to

social services.

Recent studies investigating the impact of remote work on social and economic

outcomes have shown mixed results. On one hand, Bloom et al. [138] found that

hybrid work resulted in a small improvement in both observed productivity (mea-

sured by lines of code written) and self-reported productivity. Gibbs et al. [139],

on the other hand, found that a shift from in-person to fully remote work resulted

in longer hours and lower individual productivity. The results appear to be quite
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sensitive to specific organizational contexts and work arrangements. In addition,

the holistic impacts of remote work can be overlooked due to the narrowly defined

scopes of studies within a single discipline. For example, several recent articles on

the potential for remote work to reduce commuting-related carbon emissions (e.g.

[13, 14, 15]) do not address the difference in building-related carbon emissions from

working at home rather than a central office.

Despite the emerging evidence, or perhaps because of isolated and mixed findings,

there remains a troubling lack of consensus about whether urban policy should en-

courage, discourage, or remain agnostic towards remote work. The national govern-

ments of Ireland, Australia, and Portugal have begun providing grants and building

infrastructure to facilitate remote work from rural areas [140]. Leaders in the United

States, the United Kingdom, and Canada have taken the opposite approach, pushing

for public and private workers to return to the office to boost downtown spending

[141]. Many city governments are also resistant to remote work; New York City has

banned hybrid work for city employees and criticized private employers who allow

remote work [142]. This variance in policy prescriptions might be a result of differing

societal goals but is also likely to be fueled by uncertainty around the externalities

of remote work related to social welfare, social equity, and public finances.

One reason for the uncertainty around remote work externalities is the narrow

focus of existing studies. When researchers from different domains study a similar

remote work issue, ordinary variations in terminology and methods make it difficult

to synthesize the results to generate broader insights. These ongoing issues both

present barriers to translating new research findings into policy design.

This article offers an in-depth review of available literature on the impacts of

remote work on urban systems as a motivation for new urban policies. A clear and

comprehensive taxonomy of remote work settings and stakeholders is then proposed
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to enable comparison between studies, reproduction of findings, and collaboration

across the many academic disciplines whose expertise is essential for creating holistic

remote work policy. Finally, an agenda for future interdisciplinary remote work

research to inform evidence-based urban policy is presented.

2.2 A new era for remote work

While there is much uncertainty around remote work, there is evidence that a steady

rise in the share of remote work over many years was dramatically accelerated by the

COVID-19 pandemic and that elevated levels of remote work will persist over time.

U.S. employers across all sectors are planning for remote work to exceed 31% of all

worked hours in the long term, compared to just 4% in 2018 [3]. Planned remote work

has risen steadily since mid-2020 as employers have become more comfortable with

remote work technology and business practices. Employees, on average, would prefer

about 40% of worked hours to be remote. These preferences are heterogeneous across

industries, regions, incomes, and genders. The magnitude of remote work plans and

preferences in other countries and regions varies, but the overall trend of a persistent

increase following the COVID-19 pandemic has been observed across the globe [33].

An emerging area of complexity is the fact that new remote workers are not

just working at home. Remote working at non-work, non-home locations such as

libraries, cafés, and co-working spaces make up about a third of all remote working

hours, as shown in Figure 2-1. Conducting work at each of these locations influences

productivity, well-being, and travel behavior. For example, Caulfield and Charly

[14] find that workers who used remote work hubs near Dublin, Ireland reduced their

travel by 60 kilometers per day and chose sustainable travel modes more often than

when working at the office. These workers were also more likely to experience feelings
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of isolation and lack of privacy during work.

Figure 2-1: Distribution of remote work hours by location
Data source: Barrero et al. [3]

The shift in the distribution of work locations from a single employer-provided

workplace to a broader spectrum of possible locations has had tremendous secondary

impacts on urban systems. Urban transportation systems were significantly impacted

by the reduction in commuting travel, as they typically rely on user fees for funding.

Public transit networks, many of which are designed to facilitate routine commuting

trips between outlying residential areas and downtown business districts, are one

example. Transit agencies have experienced a sudden fall in ridership and most do

not expect ridership recovery to occur in the short or medium term [136]. As of

the end of 2022, overall transit ridership in the U.S. remains at about 70% of 2019

levels [143]. Other urban transportation systems have seen a more robust recovery of

demand. Private vehicle travel has rebounded to near 2019 levels in the U.S. [144],

China [145], and the United Kingdom [146]. Global bookings for large ride-hailing
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platforms such as Uber now exceed pre-pandemic levels, although demand recovery

varies by region [147]. Ridership of urban bike-sharing systems recovered very quickly

and has continued to grow in popularity across the world [148].

These shifts in demand for different transportation modes have contributed to

changes in CO2 emissions in urban areas relative to 2019. Emissions from the ground

transportation sector declined significantly during pandemic-related lockdowns, but

at a global level, emissions from residential and commercial buildings were very

similar from 2019 to 2020 [149]. This result is consistent with previous findings that

the decrease in ground transportation emissions due to remote work exceeds overall

increases in building-related emissions incurred from working at home [150], although

the dynamics are very context-dependent and much more research is needed on this

topic.

Beyond transportation and emissions, the rise of remote work has also had a

dramatic impact on urban land use and real estate. Remote work inherently reduces

the demand for centralized office space, thus exerting downward pressure on the value

of commercial real estate. Office vacancy rates have risen tremendously since 2019 in

cities such as New York City (11% to 22%), San Francisco (5% to 23%), and London

[151, 137]. Gupta et al. [12] estimate that, if elevated levels of remote work persist

over time, office valuations in 2029 will be 45% lower than in 2019, representing a

$USD 450 billion destruction of value. In addition to concerns about tax revenue

from office buildings, cities face a sharp decline in revenues from retail spending

within commercial districts. Overall activity during 2022 urban cores remained below

50% relative to 2019 in many large North American cities, including San Francisco,

Philadelphia, Vancouver, and Montreal [135]. Ensuring long-term urban vitality

and local tax revenues may require retrofitting or replacing vacant office buildings, a

process that would benefit from smart urban policy and incentives guided by research
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into the future of remote work arrangements. Finally, remote work has affected social

and economic networks within cities. Increases in remote work after 2020 have been

found to predict greater feelings of isolation and loneliness among Finnish workers

[152]. When people do interact in urban areas, recent research has shown that the

income diversity of urban encounters has declined [11]. Within organizations, the

rapid rise in remote work and loss of spatial proximity has generally been found to

reduce communication between those who do not work closely together [153, 154,

120].

These secondary disruptions created by widespread remote work are the product

of responses to remote work by four broad groups of urban stakeholders. The first

stakeholder group is the subset of urban residents who engage in remote work. The

sudden flexibility with regard to work location has encouraged many remote workers

to reconsider where they live, how they commute, and who they work for. These

individual decisions drive the demand for urban transportation, retail stores, and

real estate.

The responses of remote workers are heavily influenced by the policies set forth

by the second stakeholder group: employers. Corporate policies around remote work

constrain or enable the decisions made by their employees. For example, a company-

wide hybrid work policy forces employees to maintain physical proximity to their

office, while allowing fully remote work enables employees to relocate as they choose.

The third stakeholder group is that of work-related service providers, such as

commercial real estate firms and mobility services. These companies have already

launched unique services aimed at remote workers, including private teleworking

booths in train stations [155] and daily rentals of residential homes for remote work

[156]. The increasing variety of potential remote work arrangements and services may

create a greater demand for remote work, compounding the uncertainty currently
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faced by corporations and policymakers.

The final stakeholder group is urban policymakers. Their response to remote

work, if well-designed, could have a strong influence on the decisions of the other

stakeholders. Zoning for remote work hubs near transit stations could help to reduce

carbon emissions by encouraging remote workers to choose public transit. Tax incen-

tives for employers who offer co-working memberships to remote staff may address

the isolation of working from home. Effective remote work policies to manage the

externalities of remote work will first require a deep understanding of the motivations

of the other stakeholder groups and how they can be expected to respond to policy

changes.

2.3 Challenges in connecting remote work research

to policy

Evidently, the rapid rise in remote work has attracted considerable attention from

across academic disciplines. Individually, recent studies provide valuable insights into

overall remote work trends and the secondary impacts of remote work on employers,

employees, cities, and business services. Yet two major barriers limit the applicability

of this research in designing comprehensive public policies. The first is the narrow,

discipline-specific scope of existing studies. When the larger context of remote work is

not considered, research findings might support a policy prescription with unintended

externalities. For example, transportation scholars may argue that the best solution

to congestion and carbon emissions from commuting is to incentivize remote work

whenever possible, ignoring the potential downsides related to social segregation and

isolation that are more likely to be studied by a different discipline. The second
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concern is that, without a common taxonomy and classification system, it can be

difficult to identify the factors that lead to different outcomes between two seemingly

similar remote work studies.

Sutton-Parker [13], [14] and [15] are all excellent studies of the impact of remote

work on carbon emissions from commuting, but none consider how the choice of

workplace also impacts emissions from buildings. As a result, there is no consen-

sus about whether policies to promote remote work could support a mandate to

reduce or eliminate citywide carbon emissions. Similarly, Choudhury et al. [118]

focus their impressive study on the productivity impact of a “work from anywhere”

policy introduced by the United States Patent and Trademark Office, finding that

patent examiner productivity increased by 4.4% for those who adopted the policy.

While qualitative interviews suggest a generally positive attitude towards the policy,

the impact on overall employee well-being, hours worked, and loneliness were not

quantified in the study. Employers enticed by the productivity benefits of such a

policy cannot know whether to expect pushback from their staff, or whether addi-

tional complementary measures will be needed to support employee well-being in a

work-from-anywhere environment.

There is certainly a limit on the overall scope of any research project, and no

individual project should be expected to cover every conceivable secondary effect of

remote work in extensive detail. Nevertheless, two simple steps can help to make

future remote work research more germane to public policy. First, anticipate the

policy implications of the proposed research project and consider whether the study

design will provide sufficient information to inform policy development. Second,

involve researchers from multiple disciplines in the study design process to identify

and address significant gaps in the study. Even if certain research questions are

considered to be beyond the scope of the initial study (e.g. employee well-being),
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the data collection process could be adjusted to capture important information for

future studies by others. Adding one or two questions about energy use while working

at home to an existing survey is much easier and less expensive than conducting an

entirely new survey months or years later.

Robust meta-analyses, such as the one conducted by O’Brien and Aliabadi [150]

on the energy impacts of remote work, are often helpful in synthesizing the results

of distinct studies on the topic. Comparing results from differing periods and geo-

graphic settings is no substitute, however, for multidisciplinary teams collaborating

on the same project to understand the holistic impacts of remote work in a single

context. Moreover, meta-analyses and review papers are difficult to organize without

a common framework and terminology for describing each study’s setting and actors.

Recent studies of the productivity impacts of remote work are an illustrative

example of the need for a common descriptive framework. As mentioned above,

Choudhury et al. [118] reported a productivity increase for patent examiners who

adopt a fully remote working arrangement. Gibbs et al. [139], conversely, found a

marked decline in productivity among IT professionals who adopted fully remote

work in response to the COVID-19 pandemic. These contrasting results are not

entirely surprising given the myriad differences between the settings of the two stud-

ies: geographic location, industry, occupation, time period, local culture, voluntary

vs. mandatory policies, and so on. Yet without a shared framework describing

each setting, these important differences are difficult or even impossible to identify.

Future researchers intent on uncovering the causal factors that contribute to diverg-

ing results between two remote studies may overlook important differences due to

inconsistencies in the information provided.
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2.4 Towards interdisciplinary research

Advancing evidence-based urban remote work policies will require extensive collab-

oration across academic disciplines and a commitment to communicating research

findings with policymakers and the public. To that end, two new tools are proposed.

The first, a taxonomy of remote work stakeholders, their relationships, and their de-

cisions, encourages engagement between groups of researchers, but also between re-

searchers and policymakers, by providing accessible alternatives to discipline-specific

jargon. The second tool, a conceptual framework for classifying remote work studies

according to the actors and setting involved, makes it much easier for researchers

to identify connections between their work and the work of others. It also creates

a formal structure for describing remote work studies that can be used to identify

the subtle differences between study designs that can produce contrasting outcomes.

Furthermore, both tools expand the context of remote work beyond traditional dis-

ciplinary silos, prompting scholars to consider the extended impact of their research.

2.4.1 Stakeholder taxonomy

There are four primary stakeholders involved in remote work: 1) employers, 2) em-

ployees, 3) local policymakers (cities), and 4) services, such as real estate firms and

mobility providers. Each stakeholder has their own set of incentives, remote work-

related decisions, and their own functional relationships with the other stakeholders.

Note that cities and service providers are also employers, which can often lead to

conflict between their internal and external positions on remote work. For example,

Apple has marketed its products to people who want to “escape from the office” while

requiring their own employees to return to the office full-time [157]. For cities and

service providers, it is therefore important to carefully consider their exact role in any
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given remote work research project. The full set of stakeholders and the relationships

between them are summarized in Figure 2-2.

Figure 2-2: Remote work stakeholders and their relationships

Within the context of remote work, the role of the worker is to choose a preferred

remote working arrangement, which may include engaging with a range of service

providers, subject to the constraints of their employer’s remote work policy. They

may exert influence on the decisions of the other stakeholders by advocating for

changes to their employer’s remote work policy (or changing employers altogether),

soliciting services from competing service providers, and pressuring local officials to

amend public policy. Remote workers make these decisions based on a complex set

of considerations, such as income, status, psychological well-being, desire for social

connection, and so on.

Employers define the set of available arrangements through their remote work

policies and may seek to influence the worker’s choice of arrangement through incen-
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tives. They interact with service providers such as commercial real estate holders as

needed and are subject to regulation by the city government. Like remote workers,

they can seek to influence policy changes through advocacy. Employers could have

many motivations related to remote work, including employee performance, employee

morale, and limiting business expenses associated with office space.

Service providers are the third remote work stakeholder. This broad group in-

volves any business that serves the needs of commuters or employers: real estate

providers, retail businesses in business districts, and transportation services. Specific

examples include co-working platforms, lunch restaurants catering to office workers,

and public transit agencies. Service providers sell their products to workers and

employers, competing based on cost, quality, and convenience. Like employers, they

are affected by the regulations set forth by local governments. Mobility and real

estate providers are specifically highlighted as examples of services in Figure 2-2 to

illustrate that services may also interact with one another by forming commercial

partnerships to offer integrated services to remote workers or their employers.

Lastly, cities (i.e. local policymakers) may become involved in remote work by

encouraging the other stakeholders to change their behavior through incentives or

regulation. One example is public subsidies for new co-working spaces, a policy

that affects the behavior of co-working platforms (service providers) and ultimately

influences the options available to remote workers. Such a policy has been adopted by

the City of New York and others [158]. Cities, of course, have a special relationship

with workers, who make up a significant portion of the electorate that chooses civic

leadership.

Beyond enumerating the stakeholders, there are two additional terms related to

remote work that would benefit from a clear definition. A “remote work policy”, set

forth by an employer, defines the flexibility afforded to each remote worker. Remote
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work policies might allow for fully remote work, no remote work, or some combination

of in-person and remote work (often referred to as a “hybrid” remote work policy).

Hybrid policies can involve several restrictions that also lack common terminology.

It is proposed that restrictions that require a minimum number of remote work days

per week, but not specific days, are referred to as a “flexible hybrid schedule” policy,

and that requirements to work in the office on specific days of the week as a “fixed

hybrid schedule” policy.

Remote work policies are different from remote work “arrangements”, which are

the setting where work takes place, involving a combination of a workplace and co-

located associates. Most remote work research to date focuses on the two most com-

mon workplaces: the employer’s business premises and the home. As noted above,

there are many other workplace options, some designed specifically for work (e.g.

co-working spaces) and others that have a separate primary purpose but facilitate

work (e.g. cafés). Co-located associates are an important component of a remote

work arrangement. While many people would choose an arrangement involving col-

leagues or other work-related associates, it is also conceivable to choose associates

in order to socialize or for some non-work benefit. For example, many remote work-

ers are choosing to work remotely in the company of friends [159]. Future research

will be needed to understand the individual and societal effects of different working

arrangements under different conditions.

Not all arrangements will be available to all remote workers at any given time.

The considerations that restrict remote work arrangement choice shall be referred

to as “dependencies”. There are three general categories of dependencies. A facility

dependency is a requirement for a location with specific features or equipment, such

as a 3D printer, to complete a design prototype. Geographic dependencies are related

to the location of a workplace. An example of a geographic dependency is someone
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who chooses a workplace in a certain neighborhood to facilitate picking up children

after school. Associate dependencies are related to the need for co-location with

specific individuals, perhaps two colleagues who desire face-to-face collaboration in

order to finish a brainstorming task. Dependencies can be either hard constraints

or simply desirable, and enforced from the top-down by employers through remote

work policies or bottom-up by individuals. Identifying any active dependencies can

help to explain why remote workers choose certain arrangements.

Carefully considering each stakeholder in the research design stage can help in

identifying gaps that undermine the policy relevance of the findings. For example,

a study of the commuting behavior of remote workers might start with the implicit

assumption that decisions are made at the individual level. Reviewing the remote

work stakeholders, however, could uncover the influence of employers (e.g. offer-

ing incentives for in-person work), service providers (e.g. introducing new flexible

transit passes for hybrid remote workers), and city policies (e.g. taxes on employee

parking) on decisions about where, when, and how frequently to commute. Overall,

the stakeholders-policies-arrangements-dependencies taxonomy provides researchers

with a common vocabulary for communicating with potential collaborators and in-

terpreting remote work studies in other disciplines.

2.4.2 Conceptual framework

Comprehensive, policy-relevant research to address the existing uncertainty around

remote work will require deep collaboration across disciplines. Decisions by remote

workers might be studied by travel behavior experts and sociologists; decisions by

corporations, on the other hand, fall into the domains of organizational behavior

and labor economics. City and service provider decisions would benefit from the
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perspectives of city planners, public policy scholars, transportation scientists, and

urban economists, among others.

To facilitate such collaboration, a conceptual framework for mapping and cate-

gorizing remote work research is proposed. The overall framework is presented in

Figure 2-3. At the most basic level, a remote work study has a decision environment,

or “setting”, and a decision maker, or “actor”. While this framework is sufficiently

general to apply to many other areas of research, the benefit of this structure for re-

mote work studies in particular is that it enforces a careful description of all features

that are relevant to remote work, rather than only discipline-specific features, thus

ensuring that future scholars will be able to reproduce and build upon new findings.

The setting has five types of features: 1) place and time, 2) people, 3) task charac-

teristics, 4) employment policies, and 5) exogenous conditions. Place and time relate

to the location and schedule at which work takes place: office vs. home, the ameni-

ties available, the cost of using the space, and so on. People other than the agent are

important to consider for remote work settings because co-location with colleagues,

friends, or strangers affects the flow of information and ideas. Tasks might require

collaboration or be highly stressful, impacting decisions by the actor. Employment

policies create constraints on the decision space; workers subject to a strict in-office

work policy cannot choose to work from a café twice a week. Finally, exogenous con-

ditions such as weather or macroeconomic crises are beyond the immediate control

of any remote work actor, but might affect decisions.

An actor is defined along four feature categories: their role with respect to remote

work, their objectives, the decision they face, and their institutional or personal

characteristics. The possible roles match the four remote work stakeholders described

in the previous section: workers, employers, cities, and service providers. Each

role has a set of possible objectives. Service providers might decide to increase
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Figure 2-3: Conceptual actor-setting framework for classifying and describing re-
mote work research

revenue or minimize expenses. Cities, on the other hand, may make decisions to

limit externalities or improve public finances. These decisions fall into one of two

categories. The first is a reactive decision to choose from alternatives subject to

the constraints of the setting. An example would be a worker choosing a remote

work location from a set of possible alternatives. The second decision type is to

proactively modify the parameters of the setting. This might involve an employer

who leases new satellite offices, thus changing the “place” component of the setting.

This creates feedback between the two: one actor’s decision affects another agent’s

setting. Actors also have personal or institutional characteristics that impact their
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decision-making processes and outcomes.

The proposed actor-setting framework is sufficiently flexible for application to

remote work problems across a wide range of disciplines. Labor economists might

be interested in how the choice of work location is affected by a remote workers’

compensation plan (Agent: Worker; Objective: Maximize compensation; Decision:

Choose from alternatives). An urban planner may take the resulting choice model

to estimate how carbon emissions from transport would change if co-working spaces

were introduced within residential neighborhoods (Agent: City; Objective: Reduce

externalities; Decision: Modify the setting). A sociologist might compare the initial

survey results to a survey from another country to understand how cultural values

shape the importance of compensation to remote workers (Objective and Decision

same as initial project; Agent: New cultural values). The conceptual framework

gives these disparate disciplines the capacity and language to build upon each others’

findings, producing holistic research to inform urban and employment policies.

Another benefit to this structured framework is that it provides clarity to the

reader and reproducibility for other researchers. When two remote work studies

have conflicting findings, the framework can be used to easily identify the differ-

ences between the settings or actors that may have contributed to the variation in

results. For example, if this rigorous framework were adopted by the two studies

finding opposite impacts of fully remote work on productivity [118, 139], it would

permit future researchers to identify whether the setting, task, employment policies,

exogenous factors, or other contextual differences are responsible for the divergent

outcomes. Over time, such comparisons between studies could unlock new insights

into the dynamics of remote work that would be difficult to extract from individual

studies.
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2.5 Outlook

There are notable ongoing efforts within the academic community to understand

the broader impacts of remote work on society and make policy recommendations.

The SWAA is a continuous monthly survey of U.S. adults with questions about

remote work, well-being, productivity, and travel behavior [3]. The entire set of

responses is publicly available online for further research. The Downtown Recovery

Project provides a different perspective, examining the relationship between remote

work, urban demographics, public policy, and activity levels across dozens of cities in

North America [135]. Lastly, a remarkable data collection effort by Huo et al. [133]

published near-real-time estimates of carbon emissions by sector from 1500 cities

worldwide, which can be used to evaluate the impacts of efforts to improve urban

sustainability through remote work policy. There are almost certainly other, yet-to-

be-published remote work projects that should follow the lead of these pioneering

studies and make their data available to the broader research community.

There remain many underexplored and policy-relevant remote work topics that

would benefit from new interdisciplinary research. Evidence-based remote work pol-

icy requires both a robust source of empirical data and new methods that can incor-

porate emerging work dynamics. A detailed agenda for future research is presented

in Section 9.4

The rise of new technology and global events have often precipitated large-scale

shifts in social behavior. We are living through a period where both are occurring

simultaneously. Old assumptions about stable commuting patterns and large, cen-

tralized workplaces are no longer valid. The shift towards remote work is not simply

a series of challenges to overcome, however. Through effective, evidence-based pol-

icy leadership informed by thoughtful, coordinated research, we might finally take
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advantage of a liminal moment to shape a more sustainable and equitable future.
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Chapter 3

The impacts of remote work on

travel: insights from three years of

monthly surveys

3.1 Introduction

In 2020, a slow and steady rise in remote working over decades was dramatically

and irreversibly accelerated by the onset of the COVID-19 pandemic. In the United

States, employers are planning for about 32% of all worked hours to take place

remotely in the long term, a nearly seven-fold increase in remote work shares relative

to 2018 [3]. The average employee would prefer even higher levels of remote work

than their employers are planning, suggesting that there is room for remote work

to grow if business practices, technology, and infrastructure evolve to ease existing

remote work constraints.

This sudden rise in remote work has resulted in the biggest shock to urban travel
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patterns in generations. The primary effect of increased remote work is that many

commuting trips can now be replaced by working at home or close to home. The sub-

stitution of some commuting trips for remote work also has narrow secondary effects

on travel behavior, including changes to mode choice, departure time choice, home

location choice, and destinations for non-work travel. New survey data is needed to

inform future travel demand forecasting models that accurately reflect these primary

and secondary effects of widespread remote work. Yet there has also been a more

fundamental change to how travel decisions are made. Remote work offers the free-

dom to choose a work location, whether that is at home, at the employer’s workplace,

or somewhere else entirely. Moreover, it forces employees and employers to consider

coordination with colleagues in their decisions about where and when to work re-

motely. The outcomes of these decisions have implications for travel demand, but

also productivity, personal well-being, and local retail spending. In the past, when

the vast majority of the workforce commuted to the same location on a regular

schedule, the connections between travel behavior and employment attributes could

be largely ignored as employees did not have the agency to act on their preferences.

In the remote work era, however, these connections can no longer be neglected. It

is now essential to understand how employment attributes and inter-organizational

coordination impact travel choices for remote workers.

To quantify emerging trends in remote work travel behavior, including connec-

tions between travel and employment, this chapter first introduces an important

source of remote work data: the monthly SWAA [3]. Initially designed to understand

experiences and attitudes towards remote work from early 2020 onward, the SWAA

was updated in 2021 to include questions about the travel behavior of remote work-

ers. This chapter presents the results of each travel behavior-related question and

explores how choices differ based on demographic status, lifestyle choices, geography,
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and critically, job type, employer attributes, and employer policies. Policy-relevant

insights for remote workers, employers, transportation services, and urban planners

are highlighted. Lastly, new open-source tools for conducting further analysis of the

SWAA data are presented.

The primary contribution of this chapter is to explore the factors that contribute

to the choice of work location for remote work, and the secondary effects of work

location choices on mode choice, travel time, and departure time. For the first time

in literature, these choices are disaggregated by employment-related factors, thus

demonstrating how travel behavior has become highly correlated with employer de-

cisions, job types, and attitudes towards work and collaboration. While previous

surveys have investigated changes in travel behavior since the rapid rise of remote

work in 2020, the SWAA is unique in its scope, duration, and level of detail. The

analyses presented herein are based on comprehensive monthly surveys of 5,000 or

more respondents spanning nearly three years. Over 400 unique questions have been

presented to respondents across the dozens of survey waves, enabling the identifi-

cation of several unexpected trends and travel behavior patterns with relevance for

urban transportation and land use policy.

3.2 Literature review

Transportation scholars have been interested in the topic of remote work (often

referred to as “teleworking”) since well before the boom occurred in 2020. Much of the

effort in modeling remote work decisions has focused on the frequency and duration

of flexible work, rather than the location and the choice to co-locate with others

[50, 51]. This is partly due to implicit assumptions that flexible workers are making

a binary choice: work at an office or work from home. Bagley and Mokhtarian [36]
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and Stanek and Mokhtarian [37] conducted surveys of workers in California to elicit

preferences for working from home and from a remote work center. Mokhtarian

and Salomon [38] and Vana et al. [39] found that attitudes towards work, family,

and commuting are more important than sociodemographic factors in determining

preferences towards flexible work. Pouri and Bhat [41] includes several occupational

factors in a remote work choice model, finding that part-time workers and employees

of private companies are more likely to choose flexible work, while those requiring

daily face-to-face interactions are less likely to choose flexible work. Sener and Bhat

[42] also included work characteristics in estimating a copula-based sample selection

model using household travel survey data from Chicago. Even recent comprehensive

frameworks that include the duration of remote work do not consider location choice

or the impact of employer policies [52, 53, 54]. In a very interesting study, Stiles and

Smart [160] reviews the travel patterns of remote workers from 2003 to 2017 based

on their choice of work location using data from the American Time Use Survey.

Leading up to 2020, remote work remained a niche working arrangement in the

United States, restricted to specific industries and occupations. As a result, surveys

were limited to small panels and often focused on employees within a single firm or

employment sector.

Several new travel and remote work surveys were issued in 2020 and early 2021 to

capture new behavioral patterns resulting from pandemic-related restrictions on mo-

bility and social activities. This was a period of very high remote work (over 60% of

worked hours in the United States in May 2020) and considerable uncertainty about

working arrangements in the medium and long term. Beck and Hensher [161] and

Echaniz et al. [162] used surveys during the early days of the pandemic to identify sig-

nificant shifts in travel behavior due to mobility restrictions in Australia and Spain,

respectively. Dianat et al. [163] surveyed 1,000 travelers in the Toronto, Canada area
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about changes to their activity scheduling and mode choice during and immediately

after the lifting of pandemic-related restrictions. Currie et al. [164] and Jain et al.

[165] use a survey distributed in Melbourne, Australia during the summer of 2020 to

estimate the total impact of remote work on future travel demand and identify con-

tributing factors, respectively. They find that access to remote work technology and

employer support were significant factors in determining the likelihood of continuing

remote work, and that attitudes were not a significant driver of long-term remote

work preferences. Balbontin et al. [166] compared differences across countries with

respect to remote work preferences in late 2020, also finding that employer support

has a strong positive effect. In a widely cited paper, Salon et al. [167] explored po-

tential changes to a wide range of travel behavior among remote workers, including

shopping, restaurant patronage, air travel, and home relocation. The number of

published studies investigating remote work trends in this period is substantial and

continues to grow.

After restrictions were lifted and the perceived public health threat subsided,

working arrangements slowly began to stabilize. New survey instruments were in-

troduced to gain an understanding of the future of remote work and travel behavior.

Nayak and Pandit [168] uses logistic regression to estimate preferences for remote

work among a small sample of Indian commuters in March 2021. The authors find

that several household characteristics, including poor internet connectivity and dis-

tractions caused by other household members, are predictive of preferences for less

remote work. Asmussen et al. [169] moves beyond the home-office paradigm in a

stated preference survey of hypothetical work location choices for Texas residents in

early 2022. The study finds that workplace environment is at least as important as

geographic location when choosing from working at home, at the employer’s busi-

ness premises, or at a “third place” (e.g. café, library, or community center). Using a
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longitudinal survey from December 2020 to March 2022, Tahlyan et al. [170] tracks

changes in attitudes towards remote work, shopping and travel for the same group

of respondents over time.

Remote work was not only a topic of interest to transportation scholars. Many

social scientists, including the SWAA founders, conducted surveys to explore the eco-

nomic and psychological impacts of widespread remote work. Barrero et al. [3] is the

original working paper exploring the responses to non-travel questions on the SWAA,

finding significant differences in preferences for remote work across demographic and

employment categories. Other large online surveys investigating remote work trends

were conducted by Bick et al. [171] and Brynjolfsson et al. [172] around the same

period, with similar results. Using a small sample of U.S. residents, Tahlyan et al.

[173] find that middle-aged workers experienced greater remote work satisfaction

than young and older workers. Similarly, Shi et al. [174] explores the factors that

contributed to greater productivity while working at home among employees in the

Seattle, United States area. These surveys are not intended to elicit travel prefer-

ences and therefore do not provide a substantive travel behavior component. To the

author’s knowledge, this is the first detailed analysis of survey results that connect

remote work location choice, travel behavior, and employment characteristics during

the widespread remote work era.

3.3 Survey methodology

The insights in this chapter are generated from the SWAA. It is a comprehensive

monthly survey designed and administered by the WFH Research team. The entire

catalog of past survey questions and the cumulative response data are available online

at https://wfhresearch.com.
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The author of this dissertation began to collaborate with the WFH Research

team in 2021 to add over 20 travel-related questions to the survey during different

survey waves. The travel-related questions cover many different aspects of travel

behavior: destination choice, mode choice, travel time, departure time, non-work

trips, and more. The responses to the travel-related questions are the basis of the

insights presented in Section 3.4. The travel-related questions are cross-tabulated

with the comprehensive set of existing SWAA questions on demographics, geography,

household characteristics, work characteristics, and attitudes to provide new insights

into the factors that impact travel behavior during the remote work era.

The first wave of the survey was distributed in May 2020, shortly after the onset

of the COVID-19 pandemic in the United States. The survey was continued in July

2020 and has been distributed monthly ever since. All survey waves are restricted

to U.S. residents over the age of 19. Minor changes to the sample size and sampling

methodology have been made since the survey began. The first travel-related ques-

tions were added in November 2021. At that time, the monthly sample was 5,000

respondents and restricted to people who had earned at least USD $10,000 in 2019.

In early 2022, the sample was increased to 10,000 respondents per month who had

earned at least USD $10,000 in the previous full calendar year.

The SWAA is a panel survey distributed online by commercial survey providers

who recruit respondents through a variety of sources. Respondents are not recruited

for the SWAA specifically, rather they are recruited for online surveys and then

provided with a link to the SWAA questionnaire. Each questionnaire includes ap-

proximately 40 to 60 questions, with a typical response time of 8 to 10 minutes. No

identifying information is provided, and the survey administrators do not interact

directly with the respondents.

Attention check questions are used to filter out a small number of low-quality
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responses from each survey wave. Then, individual survey responses are then re-

weighted to match the United States Current Population Survey (CPS) shares with

respect to age, sex, education, and income. The re-weighted sample is also very

similar to the CPS shares for census division (region of the country) and industry.

The sample is not weighted by race, therefore race is not used as an independent

variable for the analyses in this chapter. All results are drawn from the re-weighted

sample. The aggregate results of the SWAA are consistent with the results of other

similar remote work surveys [175].

After survey administration, data cleaning, and scaling, the result is a high-

quality, representative sample of thousands of working-age U.S. residents per month

across three years and a total sample size of more than 148,000 responses. Questions

have been added and removed over time, with over 400 different questions included in

at least one survey wave. This rich dataset can then be used to generate new insights

that connect remote work, travel behavior, and organizational behavior. The findings

are presented in the next section and the implications are discussed in Section 3.5.

3.4 Survey findings

This section presents the travel-related findings from the SWAA survey, cross-tabulated

with other variables of interest. The wide-ranging findings are organized into five

subsections:

1. Work location choice

2. Mode choice

3. Departure time
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4. Productivity and travel

Each subsection is further divided among different topics of interest, such as non-

work trips, trip duration, and so on. The abundance of data and questions collected

over three years makes it impossible to fit an exhaustive analysis within this chap-

ter. Therefore, only a selection of the most interesting and policy-relevant findings

is provided herein. To encourage further analysis by interested readers, tools for

data cleaning, organization, and visualization have been shared in a public GitHub

repository: https://github.com/jtl-transit/swaa. These tools can also be used

to replicate the results and charts below using the public survey data.

The variation in responses to travel-related questions across standard demo-

graphic, household, employment, and attitudinal groups are analyzed below. The

standard demographic variables are age, gender, income, and education. The stan-

dard household characteristic variables are the number of children, internet quality,

home office availability, and population density of the home ZIP code. The standard

work characteristics include industry, occupation, company size, the population den-

sity of the work ZIP code, percentage of tasks requiring a computer, employment

type, and percentage of tasks that can be done remotely. Standard attitudinal vari-

ables include attitudes towards commuting, socializing at work, efficiency at home,

and risk of infection on certain travel modes. All independent variables are categor-

ical unless otherwise noted.

The travel-related questions were added to the SWAA questionnaire in November

2021, after COVID-19 vaccines were widely available in the United States and most

pandemic-related restrictions on social gatherings and public activities were lifted. As

context for the results in this section, it is worth noting that the Omicron variant of

COVID-19 emerged in November 2021 leading to a dramatic increase in the number
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of reported COVID-19 cases in the United States from December 2021 to March 2022.

Survey responses from that period may therefore reflect greater concerns about the

public health risks of in-person work and shared transportation than responses from

subsequent survey waves. Attitudes towards managing the risks of the COVID-19

pandemic varied significantly across the United States, however, so it is difficult to

make generalizations about the country as a whole.

Note that not all questions were asked on all survey waves nor presented to

all respondents on the same survey wave due to survey logic, so the number of

respondents and timing varies by question. In particular, certain questions about

attitudes and behaviors related to remote work were only presented to respondents

who were participating in some amount of remote work. Sample sizes and time

periods are indicated below each figure.

3.4.1 Work location choice

Despite the common misconception that remote work is synonymous with “working

from home”, remote work is actually the flexibility to choose a work location from

a set of possible alternatives. These alternatives typically include the traditional

workplace and home, but, as shown in the subsections that follow, often include

third places or client’s workplaces as well. The rapid rise in flexibility with regard

to work location choice across much of the workforce is a major disruption to urban

transportation systems, which have largely been designed and operated to serve

stable commuting patterns for decades. It is also a significant concern for commercial

real estate providers, downtown retail businesses, and employers, who are navigating

these changes with very little information. This section briefly describes aggregate

preferences for remote work, the evolution of remote work preferences over time, and
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some of the constraints that prevent additional remote work. Then, the focus of

this section is describing the dynamics of work location choice between home, the

employer’s business premises, and other possible locations, which has a profound

impact on the demand for transportation. The impact of work location choice on

trip duration and total commuting time is also investigated in detail.

Work location trends

One of the primary contributions of this research is the extended investigation into

the use of third places for remote work. The SWAA considers three types of “third

places”: public spaces (e.g. cafés, libraries, community centers), co-working spaces

(that are not provided by the employer), and the homes of friends and family mem-

bers (FFH). Breaking down all worked hours by location, it is shown that about

one-third of all remote work takes place outside the home, with a relatively even

split between public spaces, co-working spaces, and the homes of friends and fam-

ily members. The remaining remote work hours take place at home, while in-person

work is split unevenly between the employer’s business premises (EBP) and a client’s

workplace. The results are shown in Figure 3-1(a). After weighting by respondent

earnings, it is determined that 17.3% of all income in the United States is earned

while working at a non-home, non-work location.

Using responses to a question about work trips rather than worked hours, it can

be shown that 34.7% of all work-related trips are to public spaces (13.7%), co-working

spaces (8.1%), and FFH (12.9%), as shown in Figure 3-1(b). The higher share of

third place trips relative to hours is because working at home does not induce a

work trip. These results have remarkable implications; overlooking third places as

a possible work location for remote workers results in over a third of all work trips
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(a) By worked hours (b) By number of work trips

(a): Nov 2021 - Jun 2022, N = 27,364; (b): Nov 2022 - Jan 2023, N = 13,091.

Figure 3-1: Work location split by worked hours (a) and number of work trips (b)

being ignored. Third place trips are different from traditional commute trips to the

employer’s business premises (EBP). Over 43% of respondents in the November 2021

survey had spent at least some time working at a third place during the previous

week.

The repeated nature of the SWAA also allows tracking of the use of third places

over time, as shown in Figure 3-2. Third place use was lowest during January and

February 2022, presumably due to the sharp rise in COVID cases across the United

States during the same timeframe. By May and June 2022, working at EBP was on

the decline and working from FFH and co-working spaces was rising.

One of the advantages of the SWAA relative to other remote work and travel

surveys is the breadth of questions relating to employment and attitudes. Use of

third places can be compared across demographic groups, household characteristics,

employer characteristics, job characteristics, attitudes towards coordinating with col-

leagues, and general attitudes towards remote work. Figure Those who are younger,
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Nov 2021 - Jun 2022, N = 27,364.

Figure 3-2: Third place use over time

male and have higher educational attainment are much more likely to make trips to

third places for remote work. The gender identity and age associations are particu-

larly strong; people under 30 are three times more likely to be using third places for

remote work than those 50 and over.

The analysis for different household characteristics is shown in Figure 3-4. Peo-

ple living or working in an urban area, those with roommates, those with a poor

internet connections and people living in the Mid-Atlantic (MA) or Pacific (Pac)

census divisions are much more likely to work from third places. This is in contrast

with the results for remote work preferences, which found little association between

having roommates and preferences for remote work. This suggests that people who

live with roommates have similar remote work preferences as others, but are more

likely to conduct that remote work outside the home. Urban dwellers are more likely

to have third places near their home, so it would seem reasonable that they are more
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All: Nov 2021 - Jun 2022, N = 27,364.

Figure 3-3: Third place use by demographic group

likely to use third places. Poor internet quality was found to be predictive of more

third place hours, but not necessarily more third place trips, suggesting that people

with poor internet travel to third places at similar rates to others but stay longer

during each visit. The New England (NE) and West North Central (WNC) census

divisions were the least likely to make trips to third places, which may be a result

of colder weather in those regions during the winter months when this question was

included in the questionnaire.

Third place use also has strong associations with employment characteristics, as

shown in Figure 3-5. People who work fewer than 40 hours per week are much more

likely to do that work at a third place (FFH in particular), as are people who work 2

or more part-time (PT) jobs. Employees of medium-sized companies are also much
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(a)-(d): Nov 2021 - Jun 2022, N = 27,364; (e)-(f): Nov 2021 - Dec 2021, N = 7,585.
NE = New England, MA = Mid-Atlantic, ENC=East North Central, WNC =
West North Central, SA = South Atlantic, ESC = East South Central, WSC =
West South Central (WSC), Mtn = Mountain and Pac = Pacific.

Figure 3-4: Third place use by household characteristics

more likely than those working for very large or small companies to use third places.

The type of remote work (RW) schedule does not have a strong bearing on third

place use. These results underscore the need to include employment factors in travel

demand models to capture commutes to third places.

Figure 3-6 shows that types of tasks that a person does at work are also strongly
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(a): Apr 2022 - Jun 2022, N = 6,583; (b): Nov 2021 - Jun 2022, N = 20,623; (c):
Jun 2022, N = 4,768; (d): Mar 2022 - Apr 2022, N = 6,323.

Figure 3-5: Third place use by employment characteristics

correlated with third place use. People who spend between 20 and 70 percent of

their day meeting with others, and between 40 and 70 percent of their time using

a computer, are the most frequent third place users. Interestingly, people who find

themselves to be more effective during remote work are also more likely to use third

places. This effect could be bidirectional, which would suggest that using third places

can make people feel more effective during remote work. Lastly, people who can do

some but not all of their tasks remotely are most likely to use third places.

Connecting third place use to attitudes around coordination with colleagues is

also important, as shown in Figure 3-7. People who rarely or sometimes prefer to be

co-located with colleagues are more likely to use third places than those who always

prefer co-location. It can be inferred that people who always co-locate with colleagues
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(a): Aug 2021 - Jan 2023, N = 69,436; (b): Sep 2021 - Oct 2021, N = 6,439; (c):
Feb 2021 - Jan 2023, N = 96,001; (d): Jul 2020 - Jan 2023, N = 106,513.

Figure 3-6: Third place use by task characteristics

are more likely to work at their employer’s business premises. People who claim that

collaborating with colleagues is the primary barrier preventing them from additional

remote work are also most likely to work at third places, possibly implying that third

places are perceived as suitable for collaborative work between colleagues. illustrates

the need to include employment and task-related factors into travel demand models.

People who need to interact with specialized equipment use third places for remote

work for only about 5% of their total working hours on average. Those who are able

to coordinate in-person days with their boss also feel more comfortable using third

places than those who do not.

Unsurprisingly, people who consider commuting time savings as a top benefit

of remote work spend about 60% less time at third places than those who are less
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(a): Feb 2022, N = 2,925; (b): Nov 2021 - Dec 2021, N = 2,971; (c): Nov 2021, N
= 3,038; (d): same as (b).

Figure 3-7: Third place use by attitudes towards coordinating with colleagues

concerned about commuting. Figure 3-8 presents the results for third place use

by different perceived benefits of remote work. Another interesting finding is that

people who enjoy socializing during in-person work are about 7 percentage points

more likely to work at third places, suggesting that third places are perceived as

social environments.

Third place trip duration

Because the SWAA includes questions about time spent at workplaces and the num-

ber of trips to different workplaces, the length of time spent at each work location type

can be inferred by comparing the two. Trips to the employer’s business premises, a

client’s workplace and co-working spaces have the longest average duration, as shown
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All: Feb 2022 - Jun 2022, N = 11,307.

Figure 3-8: Third place use by perceived benefits of remote work

in Figure 3-9. This indicates that trips to co-working places follow a similar activity

schedule as traditional work trips and might anchor the daily schedule in the same

way. Trips to work at FFH and public spaces, on the other hand, typically last for

less than two hours, implying that these are often secondary work locations used for

a specific task or for a temporary change of environment rather than for a full work

day.

Third place travel times

Respondents who used third places were also asked to provide the travel time needed

to reach the third place that they visited most recently. This is an important concern

for travel demand forecasting, given the popularity of working remotely from third

places. The initial expectation that third place commutes would be shorter than
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November 2022 - January 2023, N = 13,091.

Figure 3-9: Trip duration by work location

commutes to the employer’s primary place were confirmed, as shown in Figure 3-10.

The average one-way commuting times to co-working spaces and FFH are 26 and

22 minutes, respectively. Public space trips are shorter, at 18 minutes on average.

Note that these are average travel times across all modes, and third place commutes

are more likely to involve slower modes such as walking or cycling, as discussed in

Section 3.4.2.

Travel times to third places were also found to vary depending on the home

location of the respondent, as shown in Figure 3-10(b). Those living in urban areas

were likely to travel for longer than those in suburban and rural areas, which is

somewhat counter-intuitive given that there is typically a greater density of third

places in urban areas. However, urban dwellers are more likely to use modes with

low average travel speeds, such as walking and public transport, and are more likely

to encounter congestion.
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November 2022 - January 2023, N = 13,091.

Figure 3-10: Average travel times by third place type (a) and home location (b)

Remote work constraints

Another new question added to the SWAA in late 2021 relates to the task-related

constraints that prevent additional remote work. The purpose of the question is to

understand the potential for additional remote work in the future if some constraints

are eased through improvements in communication technology. The results, shown

in Figure 3-11, indicate that interaction with clients and equipment make up about

70% of all constraints preventing additional remote work. People who interact with

clients in person would be those involved in retail sales, auto maintenance, and

other customer-facing roles which could be difficult to do remotely. Interaction with

specialized equipment is similarly challenging to do remotely, although automation

and virtual reality technology may improve remote control of equipment in the future.

Collaborative interactions with colleagues might be done remotely, however, given

appropriate digital tools and technology. This would open up a further 22% of roles

to fully remote work.

From the results in Figure 3-11(b), about a quarter of the workforce could be
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(a) Nov 2021, N = 3,038; (b): Nov 2021 - Feb 2022, N = 16,273.

Figure 3-11: Constraints preventing additional remote work (a) and percentage of
tasks that can be done remotely (b)

working a fully remote job, and another 23% cannot work remotely at all. The

remaining 52% have a job that would support hybrid work. Put differently, about

three quarters of the workforce require some amount of in-person work in order to do

their job, suggesting that a large majority of people will still need to base their home

location around access to their primary work location going forward unless tasks are

re-allocated between jobs.

Remote work preferences

The SWAA survey includes three different questions about remote work: the share of

remote work as a percentage of total work, the respondent’s preferred share of remote

work in the future, and employer plans for remote work in the future. This allows the

establishment of an upper and lower bound on future levels of remote work in the near

term, assuming that preferences and plans remain stable. The breakdown of remote

work shares by demographic and employment groups is the primary focus of other

literature (e.g. [3]) and is therefore not included here. Results for actual, planned
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and desired amount of remote work from the SWAA, broken down by factors related

to demographics, household characteristics, employment, job tasks, remote work

policies, remote work attitudes, perceived remote work benefits, attitudes towards

coordination with colleagues and overall life priorities are provided in Appendix A

for interested readers.

Important findings include the fact that people who work for larger employers,

those who work fewer hours, and gig workers are more likely to prefer additional

remote work. From a task breakdown perspective, people whose work is primarily

done on a computer, people who speed less time in meetings and people who spend

less time collaborating are also more likely to prefer additional remote work. People

who are interested in coordinating remote work days with their boss and colleagues

prefer less remote work overall, as do people who feel less stressed and more effective

on remote work days. Interestingly, people who want to work hard to ensure their

organization’s success and those who consider work to be the most important priority

in life anticipate that their employer will plan for a higher share of remote work than

those who are less enthusiastic about their work.

3.4.2 Mode choice

The choice of work location interacts with other travel decisions such as mode choice,

departure time and even household location. This section investigates the choice of

travel mode for commutes to the employer’s business premises, commutes to third

places and for non-work trips. The responses indicate how remote workers are trav-

eling when they choose to conduct remote work outside the home, and how non-work

trips differ from commuting trips.
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Commuting mode choice

Questions about mode choice for commuting in general have been included in the

SWAA questionnaire since November 2021. These questions ask about current mode

choices and mode choices in 2019, enabling quantification of the effects of remote

work on mode choice and whether the trend has changed over time. The time series

results are shown in Figure 3-12. Commuting modes have been relatively constant

over time, with public transit and walking increasing somewhat in the summer of

2022. The response “None” indicates that the respondent did not commute during

the week prior to responding to the survey.

Nov 2021 - Jan 2023, N=70,029.

Figure 3-12: Commuting mode shares from November 2021 to January 2023

The survey data permits investigation into whether people have changed commut-

ing modes over time. Of particular interest is the transition to and from “sustainable”

travel modes. For the purpose of this analysis, public transit, walking, cycling, and

carpooling will be considered sustainable modes. Every survey wave has found that
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a greater share of people have transitioned away from sustainable commuting modes

since 2019 than have transitioned towards sustainable commuting modes, as shown

in Figure 3-13 The average across survey waves is that 6.8% of people have switched

from sustainable modes in 2019 to driving or using a taxi, while only 5.0% have done

the opposite. These high-level results suggest that even if commuting frequency has

decreased as a result of remote work, the carbon intensity of each commuting mile

travelled is likely to have risen, although it should be noted that these questions do

not capture important factors such as vehicle occupancy or fuel efficiency.

Nov 2021 - Jan 2023, N=70,029.

Figure 3-13: Reported transitions to and from sustainable commuting modes since
2019, by survey wave

Third place commutes

Mode choice distributions also differ for third places relative to overall commute mode

shares and mode shares for trips to the employer’s business premises. Figure 3-14(a)
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shows the breakdown of mode choice by work location, while Figure 3-14(b) shows the

same data with driving excluded. The results for third place mode choices are quite

remarkable, despite appearing similar to the average commuting mode in Figure 3-

14(a). Looking at Figure 3-14(b), it is evident that at a national level, the mode

shares for cycling, walking and transit are all higher than average commuting mode

shares. Transit mode shares are much higher for remote work trips to third places,

especially public spaces (54% greater than the average mode share) suggesting that

third place use is associated with greater patronage of public transit systems.

Jan 2022 - Apr 2022, N = 2,235.

Figure 3-14: Mode choice by work location, including (a) and excluding (b) driving

Non-work trips

As remote work has grown, non-work trips have become an increasingly important

contributor to overall travel demand. Respondents were asked to provide their fre-

quency of trips by mode for non-work trips during consecutive survey waves in the

spring of 2021. By plotting the number of weekly trips against remote work share

in Figure 3-15, three separate groups emerge: those who work entirely remote, those
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with hybrid work arrangements, and those who do not work remotely at all. Inter-

estingly, hybrid workers conduct the most non-work trips, and the balance of remote

and non-remote work within the hybrid schedule does not appear to be strongly as-

sociated with the number of non-work trips. Fully remote workers make somewhat

fewer non-work trips, while fully in-person workers make the fewest non-work trips

of all. This may be due to their ability to go shopping, run errands or conduct social

activities during work breaks or on the return trip from work. Looking at non-work

trips by third place use also indicates that people who spend more time at third

places also make more non-work trips.

Mar 2022 - Apr 2022, N = 5,681.

Figure 3-15: Non-work trips by remote work share (a) and frequency of non-work
trips by mode (b)

With respect to mode choice, the overall trends are similar to the commuting

trips, although the two are not directly comparable due to the different question

formats. More than 50% of the population drives to conduct non-work trips at least

five times per week, while more than 75% of the population rarely or never choose

transit, walking or biking for non-work trips. These shares are somewhat different

depending on the home location; urban residents are more likely to use non-car modes
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for non-work trips than those who live in rural areas.

3.4.3 Departure time

Flexibility related to the physical location of work has also translated into flexibility

regarding the temporal aspect of work. The freedom to work at home allows remote

workers to start working in the morning, then leave travel to the office or a third

place after peak congestion has subsided. This section reviews the distribution of

work trip departure times, how those departure times have changed since 2019, and

how they vary by work location including third places.

Commuting departure times

Typical departure times have shifted later in the day relative to 2019, as shown in

Figure 3-16. All departure times from 8:30 AM onward have become more popular,

while all earlier departure times have become less popular. Notably, the portion of

the population reporting departure times after 11:00AM has increased from 9.5% to

16%, likely reflecting an increase in the use of third places for remote work.

Third places

Departure times can also be differentiated based on the respondent’s primary work

location. As shown in Figure 3-17, departure times by work location reflect a similar

trend to third place trip duration. Departure times for trips to co-working spaces

specifically are similar to departure times for traditional commutes. Departure times

for trips to public spaces and FFH, conversely, occur much later in the day on average.
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Nov 2021 - Feb 2022, N = 16,723.

Figure 3-16: Work trip departure time changes from 2019 to current

Nov 2021 - Feb 2022, N = 16,723.

Figure 3-17: Departure times by primary work location

103



3.4.4 Productivity and travel

One of the unique benefits of the SWAA questionnaire is that it includes a compre-

hensive set of questions related to employment and productivity in addition to the

travel questions. This section reviews how the travel choices described above are

related to perceptions of productivity. These results connect the often disconnected

fields of organizational behavior and transportation planning, demonstrating how

remote work is inherently an interdisciplinary topic with complex trade-offs.

Figure 3-18 shows how perceptions of personal efficiency during remote work is

closely associated with the choice of work location. In Figure 3-18(a), it can be ob-

served that people who work fully remote and spend all of their remote work time

at home (“Remote: Home Only”) have the highest self-reported efficiency relative

to working at their employer’s business premises. People who work 100% remotely

but choose to spend at least some of their remote work hours working at a third

place (“Remote: Home+3rd”) still have positive perceptions of their remote work

productivity, but less than that of people who work entirely at home. This may be

because the choice to work at a third place is associated with a somewhat unpro-

ductive home work environment, meaning that third place work is not necessarily

the cause of lower perceived efficiency. This trend may also be a result of people

making work location choices based on factors other than maximizing productivity;

third places can offer a more social environment, new networking opportunities or

more comfortable surroundings.

The opposite trend is can be observed for remote workers with a hybrid remote

work schedule where some of their time is spent working at their employer’s busi-

ness premises. Hybrid workers who do not use third places for remote work perceive

themselves to be less productive than people who split their working time between
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their employer’s business premises, home and third places. This suggests that pro-

viding easily accessible third places for hybrid workers, who are the largest cohort

of workers in the economy, could be associated with a small rise in work efficiency.

Similar trends can be observed for efficiency relative to expectations in 2019, albeit

with less variation.

Nov 2021 - Apr 2022, N = 9,012.

Figure 3-18: Perceived change in efficiency during remote work relative to working
at EBP (a) and relative to expectations (b)

3.5 Discussion

The future of working arrangements and work-related travel patterns remains uncer-

tain. Demand for remote work rose very quickly and appears durable in the medium

term. New infrastructure, technology and services to support remote work are only

just beginning to emerge and may increase the demand by making remote work more

accessible and convenient for a wider range of tasks. Alternatively, a future economic

downturn may shift the balance of power to employers, who typically favor less re-

mote work than their employees would want. What is clear, however, is that remote

work has a strong influence on travel behavior, including destination choice, mode

105



choice, and departure time. Furthermore, widespread remote work, by providing

flexibility about where and when to work, connects travel demand with employment

characteristics and attitudes to a much greater degree than ever before.

The SWAA results demonstrate a number of notable findings relative to the travel

behavior of remote workers. Conducting remote work at a third place has become

relatively popular and now accounts for over a third of all commuting trips. The

characteristics of these trips depends on the type of third place; trips to co-working

spaces are fairly similar to traditional commutes with respect to travel time, duration

and departure time, but trips to FFH and public spaces are altogether different.

Sustainable travel modes including walking, carpooling, public transit and cycling

have lost mode share since 2019, but third place commuting trips are more likely to

use these modes than the average commuting trip. Departure times for commuting

trips have shifted later in the day overall, and the total number of non-work trips

is likely to have grown, given that hybrid and fully remote workers conduct more

non-work trips than people who do not work remotely.

This research has many important policy implications. The first is that it is

essential to consider third place commutes when estimating overall travel demand.

Many people assume that “working from home” and “remote work” are synonymous,

but this research shows that remote work often happens outside the home, inducing

a commuting trip with social externalities that differ from traditional commutes.

Preferences for third places vary considerably, not just by the typical demographic

and household characteristics that are often included in household travel surveys, but

also by employer characteristics, task characteristics, employer remote work policies,

coordination between colleagues, and attitudes towards remote work. Policymakers

must consider these factors and how they might change over time when making

investments in transportation infrastructure. Public transit agencies can also use
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these insights to identify where third place trips are occurring and offer new services

to make third places more accessible.

The SWAA findings also show that third place commutes are generally shorter, are

less likely to take place during peak hours, and have a more sustainable mode share

than typical commutes. Moreover, perceptions of work efficiency are greater among

hybrid workers who use third places relative to those who only conduct remote work

from home. These trends are despite the fact that land use, transportation systems

and third place operators have not fully adapted to the rapid and unexpected rise

in remote work. As shown in Figure 3-10, the average commuting trip to a third

place remains relatively long. By making third places more accessible and evenly

distributed across urban areas, policymakers can make third place commutes even

shorter and thus more accessible by walking and cycling in the future. This could

be especially beneficial for suburban areas, rural areas, and communities where the

existing housing stock might not be conducive to working at home.

Third place trips are also more likely to take place during off-peak hours. More-

over, remote workers are leveraging the schedule flexibility provided by remote work

to make other home-based trips during the workday. Public transit agencies should

consider whether the rise of remote work in their service areas warrants a more even

distribution of transit resources throughout the day, rather than focusing on peak

hours. This would not just benefit remote workers and attract third place commuters

to public transit, but also improve the overall transit experience for anyone working

irregular or atypical hours. A more even distribution of service would also benefit

those who conduct care, household maintenance, or leisure trips throughout the day.

This chapter explores an ongoing source of comprehensive data on travel, re-

mote work, and employment. There are many future directions for this research.

Developing statistical models to quantify the effects of different independent vari-
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ables on travel behavior would be helpful in calibrating travel demand forecasting

tools. Supplementing this aggregate longitudinal survey with travel diaries could

also help to provide detailed information about third place trips, such as travel dis-

tance and carbon emissions. Further research is also needed into the factors that

affect the choice of a specific third place for remote work. These are likely to in-

clude traditional factors such as travel time and accessibility by various modes, but

also the types of amenities available, the work task to be accomplished, and the

average occupancy. The data and code used for this analysis are freely available at

https://github.com/nick-caros/swaa-travel-analysis for anyone interested in

pursuing future research in this area.
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Chapter 4

Enhancing travel behavior models to

address the complexities of remote

work

4.1 Introduction

The tremendous increase in remote work, catalyzed by the COVID-19 pandemic,

has been widely reported in the literature. New mobility patterns have emerged

as remote workers have been freed from the need to commute to their employer’s

business premises to conduct their work. Remote workers are frequently choosing

to work outside of their homes, at libraries, co-working spaces, and cafés (known

as “third places”), shifting demand from the downtown core to regional sub-centers.

Over a third of all work trips in the United States in 2022 were trips to third places

by remote workers. What has received less attention, however, is how the spatial

and temporal flexibility afforded by remote work has upended traditional decision-
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making processes and introduced new factors into the choice of commuting frequency

and, importantly, commuting destination.

The traditional modeling framework for travel demand estimation needs several

enhancements to capture the third place commuting behavior of remote workers.

First, it must be able to capture the differences in behavior between people with fully

remote work, hybrid work (some remote and some in-person), and fully in-person

working arrangements. There is a tendency to estimate preferences for remote work

as a linear or logistic dependent variable, but these three arrangements represent very

different lifestyles. Second, travel demand models need to incorporate employment

and attitudinal factors when estimating choices. Two people in the same role at the

same firm might make very different decisions regarding work location based on their

attitudes towards collaborating with colleagues, their self-perceived productivity at

home, or their managers’ policy towards remote work. Lastly, travel demand models

would benefit from new approaches to modeling the destination choice for commuting

trips to third places, a trip category that, until recently, was very rare and received

no attention in the literature.

This chapter addresses these critical issues through the novel application of ex-

isting demand modeling methods to enhance existing travel demand models for the

remote work era. Specifically, the benefits of three model enhancements are demon-

strated:

1. Zero-one-inflated beta regression to improve the modeling of preferences for

fully remote, hybrid, and fully in-person working arrangements;

2. Introducing exogenous variables representing remote work arrangements, em-

ployer remote work policies, employer characteristics, and personal attitudes

towards remote work when modeling classical travel choices, and;
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3. Theory-driven approaches complemented with location visitation data for pre-

dicting third place destination choices by remote workers.

These three steps are then integrated into a holistic framework for estimating third

place commuting by remote workers. An extended example demonstrates how the

framework can be applied in practice using data from a large national survey of re-

mote work travel behavior in the U.S. that includes a wide range of questions about

remote work and employment. Categories of remote work variables that influence

third place commuting are summarized, and example questions are provided to fa-

cilitate future travel survey design. Models of remote work arrangement preferences,

trip frequency, mode choice, and departure time for discretionary third place trips

are all estimated using the techniques developed in this chapter. Implications of the

model estimation results for practitioners and policymakers are discussed.

The models developed in this chapter address a significant and growing problem

in travel demand modeling: how to provide an accurate estimate of the travel demand

for discretionary commuting trips to third places. To the author’s knowledge, this

is the first comprehensive framework for estimating trip frequency, departure time,

mode choice, and destination choice for third place trips by remote workers. In

addition, it provides practical survey design considerations to improve data collection

and model accuracy for the travel behavior of remote workers. Lastly, it is the first

research effort to differentiate the third place commuting patterns of hybrid workers

and fully remote workers, capturing important differences in behavior.

4.2 Literature review

Remote work was limited but steadily growing in popularity prior to the COVID-19

pandemic. Scholars have been interested in the travel choices of remote workers for
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several decades, although most focused on the choice to work either at home or at

the employer’s business premises. Collectively, Shafizadeh et al. [176] and Shafizadeh

et al. [177] provide an excellent overview of early empirical research on the topic.

From the very beginning, Mokhtarian and Salomon have argued that attitudes and

work-related constraints must be included in remote work choice models [46, 178,

48, 38, 179]. Peters et al. [180] explores preferences for remote work among a small

sample of Dutch workers who used computers to conduct their work. The authors

find that some work-related factors (e.g. amount of computer use) have a significant

effect, but household and personal factors are less influential. Haddad et al. [181] use

regression models to determine that personal factors and attitudes towards work and

traffic are predictive of desires for part-day and full-day remote work. Tang et al.

[43] finds that neighborhood built environment characteristics such as the density of

restaurants play a role in the choice to work at home. Pouri and Bhat [41], Sener and

Bhat [42], and Singh et al. [44] use different methodological approaches and data to

model remote work desires and frequency, but neither considers the location choice

for remote work. In an early exploration of preferences for different remote working

arrangements a discrete choice, Mokhtarian and Ory [182] estimates a nested logit

model that combines work schedule (full-time, part-time, unemployed) with remote

work schedule (none, hybrid or full).

Other early surveys sought to understand differences in travel patterns between

remote and non-remote workers. To evaluate non-work travel by remote workers,

Su et al. [75] estimates a binary logit model for whether someone does or does not

conduct remote work. The study finds significant differences in travel times and

non-work travel patterns, although it does not differentiate between hybrid and fully

remote workers. Asgari et al. [183] differentiates between full-day, regular part-day,

and irregular part-day remote workers, finding that full-day remote workers travel
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furthest for discretionary trips. Using a longitudinal panel survey, Mokhtarian and

Meenakshisundaram [184] finds that frequency of remote work is correlated with the

likelihood of continuing to engage in remote work over time. While these studies

occurred when remote work was relatively rare, the early evidence indicates that re-

mote workers exhibit heterogeneous travel behavior and that different remote working

arrangements should be considered separately.

The studies described above assume that all remote work is conducted at home,

and as a result, none were concerned with the location of remote work. However,

some pre-2020 studies did consider the choice of remote work at “telecommuting cen-

ters”, shared office spaces for remote workers that are the predecessors of what are

now called co-working spaces. Henderson and Mokhtarian [185] find that telecom-

muting centers can help to reduce travel relative to working at an employer’s business

premises. Working at telecommuting centers was also found to be a relatively tran-

sient behavior, as workers were often called back to the office by their employers

Varma et al. [186]. Preferences for telecommuting centers were explored by both

Bagley and Mokhtarian [36] and Mokhtarian and Bagley [114] using different sets of

data. The studies found that at the time, remote workers were relatively indiffer-

ent towards remote working at home or at a telecommuting center. Taking a more

holistic approach, Vana et al. [39] develops a comprehensive joint model of work

schedule, remote work frequency, and remote work destination choice between home

and a telecommuting center. While it was published in 2020, Stiles and Smart [160]

uses a large national dataset to investigate remote working at third places (cafés and

libraries) between 2003 and 2017. Third place use was found to be limited overall,

but also to have an observable effect on departure time and total daily travel.

Since 2020, there has been considerable interest in emerging preferences for re-

mote work and the travel behavior of remote workers. Large surveys have been used
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to identify trends in behavior in the United States [171, 3, 167, 170], Canada [163],

Australia, [164], India [168], Spain [162], and elsewhere. Many studies have estimated

choice models for remote preferences [166, 187, 165] and satisfaction Tahlyan et al.

[173]. In an interesting paper, Asmussen et al. [169] estimates preferences for dif-

ferent hypothetical workplaces using survey data from workers in Texas. The home

environment is found to have a strong influence on whether working at home or at a

third place is preferred by remote workers. The study does not include an estimation

of third place commuting frequency or destination choice. Using qualitative meth-

ods, Reuschke et al. [159] investigates the use of both co-working spaces and private

homes as collective workplaces for remote work and the factors that contribute to

location selection.

Finally, the last methodological section of this chapter provides an overview of

possible approaches to disaggregate destination choice modeling for trips to third

places by remote workers. Typical travel demand models estimate destination choice

aggregated to pre-defined zones of an urban area (e.g. 188, 189). Destination choice

estimation in the literature has often relied on o gravity-based models or utility

theory-based models [190]. Vitins et al. [191] provides a comprehensive overview

of both approaches. The competing destination model is another popular approach

[192, 193, 194]. Bhat et al. [192] demonstrates how home-based work trips can be

incorporated into a zonal competing destination choice model, but only considers the

density of employment at the destination zone as an attractive factor. Rietveld and

van Woudenberg [195] shows how destination utility for work trips can be estimated

theoretically if strong assumptions are made about the distribution of possible work

locations within a symmetrical urban area.

There has been little research into destination choice for work trips, given that

work trips were almost always fixed. Many destination choice models have been
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estimated in the past for tourism [196, 197] and for non-work discretionary trips

[198, 199, 200]. These choices have many of the same principles as work trips, but

they are fundamentally different they do not involve considerations around produc-

tivity, focus, or collaboration on work tasks. A few interesting papers have sought

to improve the accuracy of work trip destination choice modeling. Vitins et al. [191]

adds capacity limits to destination zones for general work trips, which is very relevant

for work trips to third places. Clifton et al. [201] includes measures of pedestrian com-

fort in a utility-based destination choice model, finding that supportive pedestrian

infrastructure has a significant and positive effect on the likelihood of a particular

zone being chosen for home-based work trips.

Some work has gone into estimating values for the utility of destinations, a key

component of utility-based destination choice models, using revealed preference data

and simulation. Molloy and Moeckel [189] estimates destination utility at the zonal

level for long-distance tourism trips using location-based services data. Taking a

similar approach, Zhu and Diao [202] uses crowdsourced location visitation data to

estimate destination utility for shopping and leisure trips. Yan and Zhou [203] model

destination choice in a congested transportation network using a game theoretic ap-

proach, finding that it performs well at replicated observed intra-city flows between

mobile phone coverage areas. Exploring the use of different workplace types, Shear-

mur [204] shows how a “work location probability space” can be constructed from

survey data, although the method is developed and applied for types of workplaces

rather than specific geographic locations.

This chapter updates and extends the work of early remote work scholars by

developing a model of remote work preferences and commuting frequency for several

categories of third places rather than “telecommuting centers”. Unlike the previous

research, it applies these methods to data from the widespread remote work era (2020
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onward) to generate new insights that have immediate policy relevance. Lastly, it

presents approaches to estimating destination choice for discretionary third place

work trips at the disaggregate level, an area that has not been explored in the

previous literature summarized above.

4.3 Methodology

This three-part section describes the overall modeling framework for estimating the

frequency and destination of third place commutes. The first section develops a

model for estimating working arrangement preferences using zero-one-inflated beta

(ZOIB) regression to capture the lifestyle differences between fully remote work, hy-

brid work, and fully in-person work arrangements. The second section estimates

three separate discrete choice models for the frequency, mode, and departure time of

discretionary trips to third places. These models demonstrate how including remote

work arrangements, employer remote work policies, employer characteristics, house-

hold characteristics, and personal attitudes improves prediction accuracy for third

places travel behavior. The final section shows how theory and data can be combined

to develop and calibrate a model for third place destination choice. The flowchart

presented in Figure 4-1 illustrates the overall procedure and the role of each section.

The first two sections estimate models based on data from the SWAA. An ex-

tended description of the SWAA methods and data is included in Section 3.3; relevant

details for this chapter are included here. It is a national survey, issued monthly since

July 2020 to U.S. respondents over the age of 19 who earned at least USD $10,000 in

the previous year. The initial survey waves had 5,000 respondents per month, with

more recent waves issued to 10,000 respondents. The result of the monthly SWAA

is a pool of over 140,000 individual survey responses to a wide range of questions
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Figure 4-1: Flowchart illustrating the overall procedure for estimating third place
travel behavior

about employment, remote work, and travel behavior. The results of the SWAA

are consistent with other similar remote work surveys [175]. The entire catalog of

past survey questions and the cumulative response data are available to the public

online at https://wfhresearch.com. To ensure only quality responses are included

in the dataset, attention check questions are used to filter out low-quality responses.

The time range and sample size of the responses used to estimate the models in this

chapter are indicated in the appropriate section below.

The specific details of the inputs for the models estimated in the following sec-
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tions, including the survey questions and sample means, are available in Appendix B.

4.3.1 Mixed discrete-continuous remote work preferences

The first modeling enhancement proposed in this chapter is the use of ZOIB regres-

sion to determine the factors that contribute to preferences for different remote work

arrangements. There are three possible arrangements: fully remote work, fully in-

person work, and hybrid work (a scheduled or flexible mix of remote and in-person

work). Remote work arrangement preferences, if realized, have a direct influence on

daily travel patterns and overall demand as in-person work provides a spatial and

temporal anchor for daily activity schedules.

Each of these arrangements is associated with important lifestyle and household

considerations. Fully remote work frees the worker from the need to live within a

reasonable commuting distance from a fixed workplace, allowing them to choose a

home location based on non-work factors. They must also ensure that their home

environment is suitable for remote work, or find an alternative third place work loca-

tion. A fully in-person worker does not need a productive remote work environment,

but is more sensitive to commuting distance. Hybrid workers need both a suitable

work environment near home and relatively convenient access to their workplace, but

may choose to accept a longer commute than a fully in-person worker or a substan-

dard remote work environment in order to satisfy other home location preferences.

These lifestyle differences are reflected in the distribution of preferences for remote

work (as a percentage of total worked hours) collected from the SWAA survey. The

distribution of observed remote work, employee preferences for remote work, and

employer plans for remote work all exhibit inflation at the zero and one levels, as

shown in Figure 4-2.
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Survey waves: November 2021 - December 2021, N = 7,407.

Figure 4-2: Distribution of observed remote work share, employee preferences for
remote work, and employer plans for remote work as a percentage of total worked
hours

Surveys of remote work preferences often ask respondents the percentage of days

that they would prefer to work remotely (e.g. 3). In model design, this can be treated

as a continuous dependent variable or as a discrete choice between three options

(fully remote, fully in-person, and hybrid). As noted earlier, there are significant

lifestyle differences between 0% remote work, 1 - 99% remote work, and 100% remote

work. Discontinuities would be expected at the extreme ends of the distribution.

Traditional linear and logistic regression models for continuous dependent variables

are therefore not appropriate for this problem. Similarly, a discrete choice model

would not capture the relationships between the input variables and preferences for

different remote work splits within the hybrid work arrangement (e.g. 1 day per

week vs. 4 days per week). These splits define the number of commuting days and

therefore must be captured in the travel demand modeling process.

The ZOIB regression model was recently developed to handle mixed continuous-
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discrete distributions that have a probability mass at both the zero and one levels.

Despite its evident usefulness for modeling this type of data, it has rarely been

applied to remote work preferences or any travel demand modeling topics in the

literature [205, 206, 207]. The general class of zero-or-one inflated beta regression

models and estimation methods are described in Ospina and Ferrari [208]. The ZOIB

model is a mixture of three models estimated simultaneously. The first is a logistic

regression model to predict whether an outcome 𝑦𝑖 takes an extreme value, 𝑦𝑖 ∈ 0, 1,

represented by 𝑝0,1 There is another logistic regression model to predict whether the

value is 1, conditional upon the outcome being an extreme value, represented by 𝑝1.

Finally, there is the beta regression model that estimates the parameters of the beta

distribution (mean 𝜇 and precision 𝜑) for the non-extreme outcomes. The density

function of the beta distribution is represented by 𝑓Beta(𝑦𝑖), with mean 𝜇. The esti-

mated ZOIB parameters can therefore be used to determine the probability that an

outcome is zero (𝑝0), the probability that an outcome is one (𝑝1), and the probability

density of outcomes between zero and one. The probability density function 𝑓(𝑦𝑖) is

then given by the expression:

𝑓(𝑦𝑖) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑝0,1(1 − 𝑝1) if 𝑦𝑖 = 0

𝑝0,1𝑝1 if 𝑦𝑖 = 1

(1 − 𝑝0,1𝑓Beta(𝑦𝑖) 0 ≤ 𝑦𝑖 ≤ 1

(4.1)

Applied to remote work preference data, ZOIB allows estimation of, with a single

model, the effect of any independent variables on preferences for fully remote work,

fully in-person work, and hybrid work, as well as the effect on the remote work split

preferences within hybrid work.

A sample SWAA responses from May 2022 (N=2,128) are used to demonstrate
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how ZOIB regression can be used to generate insights about remote work preferences.

The May 2022 time period was chosen for analysis as it represents a time when

attitudes towards remote work (RW) and the public health threat posed by COVID-

19 had begun to stabilize. The May 2022 SWAA questionnaire also includes an

interesting set of questions that can be tested as potential explanatory variables in

the ZOIB model. The model parameters were estimated with Bayesian estimation

methods using the brms package for R [209].

Explanatory variables including demographic factors, household location, job task

characteristics, and attitudes towards remote work were tested for their impact on

remote work preferences. For parsimony, insignificant variables were gradually re-

moved from the model. The final continuous and categorical explanatory variables,

including their distributions across the sample, are described in Table B.3. The re-

sults and significant parameters for the ZOIB model are shown in Table 4.1. The

reference category for the categorical independent variables are 1) rural home loca-

tion, 2) no children under 5, and 3) remote work (RW) perceptions are better among

almost all acquaintances.

In order to provide a baseline for comparison, the “Reference” row shows the

results for a hypothetical respondent that falls within each of the reference categories

and has the sample mean values for each of the continuous variables. The expected

preferences distribution of someone with an urban home location and one more year

of education than the mean can be calculated by taking the sum of the first three

numerical rows in the table. The mean values for each variable are reported in

Table B.3.

Interpreting the various model parameters illustrates the value of ZOIB regres-

sion. The first column, P(𝑥 = 0), is the effect of the independent variable on the

probability that someone will choose a fully in-person arrangement. The directions
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Table 4.1: Summary of ZOIB regression results for remote work arrangement pref-
erences

Variable
P(𝑥 = 0)

No
Remote

P(𝑥 = 1)
Fully

Remote

P(0 < 𝑥 < 1)
Hybrid
Work

𝜇
Hybrid

Remote %

E[𝑥]
Combined

Effect
Reference 35.33% 41.33% 23.34% 57.98% 51.72%
Education (years) -2.58%** 1.29%** 1.29%** 0.89%** 1.89%**

Urban home location -7.11%* 4.59%* 2.52%* - 5.53%*

Child under 5 -10.57%* 5.72%* 4.34%* - 7.34%*

Employer size (per 100) -0.04%* 0.56%* -0.52%* 0.00%* 0.37%*

Computer task % of work -0.10%*** 0.14%*** -0.03%*** 0.06%*** 0.13%***

All meeting % 0.17%* -0.13%* -0.04%* - -0.14*%
Coworker meeting % -0.17%*** 0.11%*** 0.06%*** 0.09%*** 0.14%***

RW better for most 2.65%*** -6.62%*** 3.97%*** -5.81%*** -5.77%***

RW better for some 5.42%* -8.38%* 2.96%* -6.45%* -7.91%*

RW no change 13.49%* -10.27%* -3.22%* -4.88%* -11.65%*

RW worse for some - - - -7.29%* -0.51%*

RW worse for almost all 16.78%* -11.82%* -4.96%* - -13.67%*

* denotes a 95% confidence level, ** a 99% confidence level, *** a 99.9% confidence
level. The symbol - replaces parameters below a 95% confidence level

of the coefficients are not entirely surprising. Higher education, urban home location,

having a young child at home, working for a large company, and spending more time

on a computer all lead to a greater desire for remote work. Every additional year

of education is predictive of a preference for 2% more remote work on average, so

someone with a four-year college degree would prefer about 7.5% more remote work

than someone with the exact same lifestyle but who did not go to college. The same

variables also increase the likelihood that someone will prefer fully remote work. In-

terestingly, they have opposing effects on preferences for hybrid work. Working for

a large company and spending time on a computer decrease preferences for remote

work, although the effect is relatively weak. Education, urban living, and young

children increase preferences for hybrid work, however. The overall magnitude of the

young child effect is greater than the urban home location effect, indicating that par-
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ents of young children in rural areas would like to work remotely more than childless

adults in urban areas.

Perceptions of remote work among one’s social group also play a strong role in

determining preferences for remote work. Relative to the reference (perceptions of

remote work increased among almost all), all other responses have a strong negative

effect on preferences for fully remote work. If perceptions of remote work have still

improved overall, just not among the entire social group, people are likely to replace

preferences for fully remote work with preferences for hybrid work. If perceptions of

remote work have worsened, people are likely to replace preferences for fully remote

work with preferences for fully in-person work. These attitudes also have a strong

negative effect on the amount of remote work preferred by hybrid workers. By

contrast, more education increases the percentage of remote work preferred by hybrid

workers. These nuances, which have a substantial impact on travel demand, are lost

when treating remote work preferences as either a continuous or categorical variable.

4.3.2 The influence of employment, household, and attitudi-

nal variables

The second model design step that is essential for estimating remote work travel be-

havior, especially discretionary third place trips, is the inclusion of individual-specific

variables related to remote work arrangements, employer remote work policies, em-

ployment characteristics, household characteristics, and personal attitudes towards

remote work. Before remote work became widespread, these questions were largely

irrelevant for modeling work travel, as workplaces and work schedules were fixed for

the vast majority of travelers. Now that remote work represents a substantial share

of all work hours, many people have the flexibility to choose complex daily activity
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patterns involving work trips. How, when, and where people choose to make discre-

tionary work trips can ultimately affect the overall demand for travel. This section

shows how different remote work-related exogenous variables, in addition to tradi-

tional demographic and geographic variables, can improve the modeling accuracy for

three entirely different components of third place travel: trip frequency, departure

time choice, and mode choice. In addition, it recommends a specific language to use

for common survey questions to allow for comparison between surveys with different

samples or sampling periods.

Five categories of remote work-related exogenous variables are incorporated into

the travel behavior models in this section. Examples within each category are pre-

sented in Table 4.2. Each of the 24 questions is recommended for inclusion in future

travel surveys; future surveys may adopt the detailed language and response options

presented in Tables 4.2 and B.4 - B.6 to facilitate the reproduction and comparison of

results across future surveys. Many of these questions are typical for broad economic

surveys (in fact many are extracted directly from the SWAA survey) but they are

rarely if ever included in travel surveys.

The categories are assigned letters so that individual questions may be identified

using the category and the question number (e.g. A1 for the first question in the

remote work arrangements category). The first category of remote work variables is

remote work arrangements. As discussed in the previous section, hybrid, and fully

remote arrangements reflect very different lifestyles, and could therefore be expected

to influence travel behavior for third places. Fully remote workers may prefer to

use third places more frequently, as they have fewer face-to-face interactions with

colleagues than regular hybrid workers. Unlike fully remote workers, hybrid workers

who endure severe congestion during commutes to their employers’ business premises

may be discouraged from driving when they travel to third places. Remote work
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arrangements are incorporated into all four of the travel behavior models estimated

below.
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Table 4.2: Categories and recommended language for remote work-related questions
that affect travel behavior

Category Recommended question language
Remote work
arrangements
(A)

1. Last week, how many hours did you work: a) at your employer’s
primary business premises or a client site; b) remotely.
2. How many hours per week would you prefer to work: a) at your
employer’s primary business premises or a client site; b) remotely.
3. Do the days of the week that you work remotely change by week?

Employer
remote work
policies (B)

1. Does your employer require you to work the same in-person days as
your direct manager? As your team members?
2. Who sets your remote work schedule? a) you, b) your manager, c)
senior management.
3. Does your employer monitor compliance with remote work policies?
4. Does your employer offer incentives or subsidies for working at third
places (e.g. pays for a co-working subscription)?
5. Would your supervisor prefer to end remote working in the future?

Employment
characteristics
(C)

1. How many employees work for your current employer?
2. How many people belong to your main work team?
3. Do you directly manage or supervise other employees?
4. Which of the following best describes your employment status? a)
Full-time job; b) One or more part-time jobs; c) Self-employed; d) Free-
lancer or gig worker.
5. What percentage of your time is spent on tasks that cannot be done
remotely?
6. What percentage of your time is spent collaborating with colleagues?

Household
characteristics
(D)

1. How would you rate your home internet quality?
2. At home, do you have your own room (not bedroom) to work in?
3. Do you live with your partner and/or children?
4. Do you currently live with one or more roommates?

Remote work
attitudes (E)

1. How does your efficiency working remotely compare to your efficiency
working at your employer’s business premises?
2. How have perceptions of remote work changed among people you
know?
3. How would working one more day of remote work than your co-workers
affect your chance of promotion?
4. How much of a pay raise would you value one additional day of remote
work (hybrid workers)?
5. How much of a pay cut would you value the same as one additional
day of in-person work (fully remote workers)?
6. Do you continue to practice social distancing at work or in social
settings (e.g. on public transit)?
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The second and third types of questions are about employer remote work poli-

cies and employment characteristics. Employer remote work policies could include

requirements to coordinate in-person work days with a supervisor or colleagues, or

a supervisor who discourages remote work. Such policies could be expected to influ-

ence the frequency of third place trips and the types of third place chosen for remote

work. Employment characteristics, such as the size of the company or whether some-

one directly manages others, could have a similar effect. Large companies may invest

more in digital communications tools, making it easier for their employees to work

from third places. Managers might be more inclined to mentor others by coordi-

nating in-person working days or organizing collaborative remote working days at a

third place. However, all else being equal, employment characteristics and policies

are not expected to affect mode choice and are therefore not included in the mode

choice model.

Household characteristics could certainly influence the choice of when and where

to conduct remote work. Having a young child at home or living with roommates

does not impact a traditional commute, but may make remote workers more or less

inclined to visit third places. Departure times for third place trips could be affected

by a child’s school or daycare schedule. Similarly, personal attitudes towards remote

work, perceptions of personal efficiency during remote work, and attitudes towards

the risk of COVID-19 may influence the frequency, timing, and destination of third

place trips. Like employment variables, these additional household and attitudinal

variables are not expected to have an independent effect on mode choice and are

therefore excluded from the mode choice model.

Logistic regression (logit) models are used for mode choice, departure time choice,

and trip frequency. As is common in the literature, mode and departure time are

modeled using multinomial logit (MNL), while trip frequency, which is an ordered
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discrete dependent variable, is modeled using an ordered logit (OL) model structure.

The MNL model assumes that the utility of each alternative has both deterministic

and random components. The deterministic component is a weighted combination

of the independent variables. Let 𝑥𝑛𝑖 be the 𝑛th independent variable for alternative 𝑖

with coefficient 𝛽𝑛
𝑖 , and 𝑥𝑖 the vector of all such independent variables. The random

utility deviate 𝜀𝑖, is then added to the deterministic utility term to get the random

utility. The random utility for alternative 𝑖, represented by 𝑈𝑖, is given by:

𝑈𝑖(𝑥
𝑛
𝑖 ) =

∑︁
𝑛

𝛽𝑛
𝑖 𝑥

𝑛
𝑖 + 𝜀𝑖 (4.2)

In the MNL model, 𝜀𝑖 is assumed to be independent and identically distributed

across the alternatives with an extreme value distribution. The probability of choos-

ing alternative 𝑖 is then given by:

𝑃 (𝑦 = 𝑖|𝑥𝑖) =
𝑒
∑︀

𝑛 𝛽𝑛
𝑖 𝑥

𝑛
𝑖∑︀

𝑖 𝑒
∑︀

𝑛 𝛽𝑛
𝑖 𝑥

𝑛
𝑖

(4.3)

The OL model, used for to estimate the choice of trip frequency, is an extension

of the MNL model that accounts for the ordinal nature of the available alternatives.

The observed ordinal choice variable 𝑦 is a function of a different continuous latent

variable denoted by 𝑦* that has various thresholds 𝜏𝑖. The value of 𝑦* is computed

using a similar expression as the utility function in the MNL model:

𝑦 =
∑︁
𝑛

𝛽𝑛𝑥𝑛 + 𝜀 (4.4)

Then, the observed variable 𝑦 depends on the value of 𝑦* relative to the thresholds.

Let there be 𝑀 alternative discrete values for 𝑦. The value of 𝑦 is determined
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according to the following expression:

𝑦 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 if 𝑦* ≤ 𝜏1

𝑖 if 𝜏𝑖 ≤ 𝑦* ≤ 𝜏𝑖−1

𝑀 if 𝑦* ≥ 𝜏𝑀−1

(4.5)

Then the probability 𝑃 (𝑦 = 𝑖) is the probability that 𝑦* is in the 𝑖th range. When

𝜀 has a standard logistic distribution, the probability calculation reduces to:

𝑃 (𝑦 = 𝑖) =
1

1 + 𝑒𝜏𝑖+
∑︀

𝑛 𝛽𝑛𝑥𝑛 − 1

1 + 𝑒𝜏𝑖−1+
∑︀

𝑛 𝛽𝑛𝑥𝑛 (4.6)

Additional details of the derivation of these commonly used models are omitted

here for brevity; Small [210] provides extensive discussion of each model with appli-

cation examples. Each of the logit models is implemented using Biogeme 3.2.11 for

Python [211]. The unknown parameters are estimated The models are summarized

in B. Exogenous variables and their descriptive statistics are also described for each

model.

Responses from the November 2022 - January 2023 waves SWAA survey, the

most recent data available, are used to estimate the models for trip frequency and

departure time. Due to changes in the survey design, mode choice for third place is es-

timated from earlier waves of the survey, January 2022 to April 2022. Only responses

by employed respondents with hybrid or fully remote schedules were included. In

addition to the remote work-related variables described above, each model includes

demographic variables (income, gender, age, education), commute time, and home

location category (rural, suburban, or urban). Baseline models are also estimated

without including the new remote work variables for comparison.
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Third place departure time

The model estimation results for the third place departure time MNL model are

presented in Table 4.3. The alternative specific constant for <7:00 is set to 1 for

scaling. The columns of the table represent the departure time categories (in 24-

hour clock format). Many of the remote work and employment-related variables are

found to be statistically significant predictors of certain departure times. Moreover,

the model fit is improved relative to the baseline model where only demographic,

geographic, and household variables are included. The improvement in model fit

relative to the baseline is found to be statistically significant at a 99.9% confidence

interval using the Wilks likelihood-ratio test [212].

The model estimation results provide interesting insights into the impact of re-

mote work characteristics on departure time. Having a hybrid remote work ar-

rangement is associated with a greater likelihood of departing during the traditional

morning peak hours relative to those who work entirely remotely. Those who work

at both very large and very small employers are more likely to depart during the

traditional lunch hour, perhaps as part of splitting their work day into working from

home in the morning and working at a third place in the afternoon. Remote workers

who manage others are much less like to depart for a third place in the middle and

late afternoon. Meanwhile, people whose boss is planning to end remote work in the

future are much more likely to visit third places late in the day when meetings are

more likely to have wrapped up for the day. Remote workers who prefer to continue

social distancing are more likely to avoid congested commuting times, while those

who report higher efficiency during remote work are most likely to depart for third

places very early or at lunchtime.
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Table 4.3: Model estimation results for third place departure time

Variable <7:00 8-9 10-12 12-14 14-16 >16:00
Constant 3.303*** 1.934** 3.102*** 2.166*** 1.783*

Female 0.471* -0.424**

Age (years) 0.041** 0.037**

Education (years) 0.108***

Urban home -0.611*

Suburban home -0.394*

Live with partner/child (D3) -0.572*

Live with roommates (D4) 2.069*** 1.111**

Hybrid arrangement (A1) 0.337*

Large employer (C1) 0.516**

Small employer (C1) 0.527**

Manage others (C3) -0.627** -0.695**

Boss prefers no RW (B5) 0.844**

Keep social distancing (E6) 0.537*

Remote work efficiency (E1) 0.018** 0.012*

Log-likelihood -2891.06
Log-likelihood of baseline model -2919.96
Likelihood ratio 57.80
Difference in number of estimated parameters 10
Likelihood ratio test Reject null hypothesis***
Note: columns for 7-8 and 9-10 are omitted as only the constants were found
to be significant (7-8: 3.136***, 9-10: 3.373***

* denotes a 95% confidence level, ** a 99% confidence level, and *** a 99.9%
confidence level.

Third place trip frequency

Next, the estimation results for the third place trip frequency ordinal logit model

are shown in Table 4.4. The model of third place trip frequency, like the model of

third place departure time, includes several significant employment-related variables,

and the model fit is improved relative to the baseline model where remote work and

employment variables are excluded.

Fewer of the employer variables were found to be significant in the trip frequency
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Table 4.4: Model estimation results for third place trip frequency

Variable Coefficient
Threshold 1 0.300***

Threshold 2 0.603***

Threshold 3 1.126***

Threshold 4 1.478***

Female -0.411***

Age (years) -0.047***

Education (years) 0.069**

Urban home 0.392***

Live with partner/child (D3) 0.298**

Large employer (C1) -0.411***

Small employer (C1) -0.426**

Manage others (C3) 0.764***

Log-likelihood -2524.64
Log-likelihood of baseline model -2568.64
Likelihood ratio 88.00
Difference in number of estimated parameters 3
Likelihood ratio test Reject null hypothesis***
* denotes a 95% confidence level, ** a 99% confidence level, and *** a 99.9%
confidence level.

model relative to the departure time model. Yet the estimation results do find that

people working for either large or small employers make fewer trips to third places

relative to those working for moderately-sized employers (50 - 499 staff). This may

reflect that small firms, especially those founded recently, are less likely to have a

dedicated office and might offer co-working subscriptions as an alternative. Large

firms, on the other hand, may have more resources to address concerns about com-

pany culture and employee well-being by subsidizing occasional in-person meetings

and team-building days at third places. Moreover, people in management positions

are found to make more trips to third places. This result might be indicative of

managers choosing to meet with their subordinates at third places on occasion, or

it may be that those in management positions generally have more flexibility and
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disposable income relative to those who have no direct reports.

Third place mode choice

While the choice of travel mode when visiting third places is unlikely to be influenced

by employer size or a manager’s attitude towards remote work, the model results in

Table 4.5 show that it is influenced by the type of remote work arrangement. An

MNL model was estimated for mode choice when visiting third places, with remote

work arrangement as an exogenous variable. Remote work arrangement was found

to be statistically significant in the choice of public transit and taxi for third place

trips, and including these variables was found to improve the model fit with a 99.9%

confidence level.

Table 4.5: Model estimation results for third place mode choice

Variable Drive Carpool Transit Bike Walk TNC
Constant -

1.672***

Female 0.445** 0.229* 0.323*

Age (years) 0.018*** -0.032***

Education (years) 0.106*** -0.060*** 0.098***

Commute time (min) 0.004*

Urban home -0.569*** -0.627***

Suburban home 0.641** 0.456*

Hybrid arrangement (A1) -0.220* -0.266*

Log-likelihood -4073.11
Log-likelihood of baseline model -4076.80
Likelihood ratio 7.37
Difference in number of estimated parameters 2
Likelihood ratio test Reject null hypothesis***
* denotes a 95% confidence level, ** a 99% confidence level, and *** a 99.9%
confidence level.

The alternative specific constant for the drive mode is set to 1 for scaling. Relative

133



to a fully remote arrangement, hybrid workers are less likely to use transit and

taxis or Transportation Network Companies (TNCs) such as Uber to access third

places. The key lifestyle difference between hybrid and fully remote workers is that

hybrid workers must maintain convenient access to their employer’s primary business

premises. Fully remote workers who do not commute on a routine basis might be

more likely to allocate their travel budget towards relatively high-cost taxis or TNCs

for occasional third place trips. It is not entirely obvious why hybrid workers would

have a lower likelihood of using transit to access third places, although Table 4.3

shows that hybrid workers are more likely to travel to third places during the AM

peak hour. The possibility of crowding on transit vehicles during that time might

make transit a less desirable mode.

4.3.3 Predicting discretionary work trip destinations

The two previous subsections have shown how new model types and modeling vari-

ables can be used to improve estimates of travel behavior associated with third trips,

but did not address destination choice for third place trips. Previously, travel behav-

ior models relied on the stability and mandatory nature of the commute or school

trip destination to anchor daily and weekly activity schedules. A single question on

a travel survey asking the respondent to enter the ZIP or address of their work lo-

cation provided sufficient information to model the impact of commuting on carbon

emissions and congestion. With the rise of remote work, however, a large fraction of

commuters have the flexibility to choose their work location from many possible alter-

natives on a daily basis. As a result, work trips have become similar to discretionary

trips, where even the set of alternative destinations under consideration is difficult to

estimate. Third place destinations recorded within a travel diary may change entirely
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the week or month after the survey is completed, making survey-based methods for

modeling work trips insufficient for third place trips.

Traditional models of discretionary trips involve a measure of “attractiveness”

for individual destinations or spatial clusters of destinations (e.g. 201). The at-

tractiveness of a third place is influenced by the same factors as other discretionary

trip destinations, such as familiarity and proximity to complementary destinations.

Unlike typical discretionary trips, however, third place destination attractiveness

is also influenced by work-related amenities (e.g. Wi-Fi quality). This subsection

reviews the unique considerations associated with destination choice modeling for

third place trips: the attractiveness of third place types, the influence of employers

and attitudes towards remote work, and challenges in collecting data for calibration.

As in the previous subsection, the importance of accounting for remote work and

employer-related factors when estimating third place travel behavior is emphasized.

It also demonstrates how revealed preference mobility patterns and Point of Interest

(POI) data can be leveraged to inform and calibrate choice models for third place

trips. The methods described in this subsection are applied to practical problems as

part of the case studies in Chapters 5 through 8.

Developing a utility-based discrete choice model for third place trip destina-

tions involves three important steps: determining the attractiveness of a destination,

adding individual-specific variables, and finally, estimating the model using observed

or stated behavior. These components are illustrated in Figure 4-3.

Functions of the attractiveness of third places, unlike those for other discretionary

trips, should include remote work amenities in addition to the factors related to

travel such as accessibility and travel cost. Remote workers are likely to consider

the availability of laptop chargers and a strong Wi-Fi connection, noise levels, and

the explicit (e.g. subscription fee for a co-working desk) or implicit (e.g. cup of
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Figure 4-3: Flowchart illustrating the different components and data sources pro-
posed for estimating third place destination choices

coffee) cost of admission as part of the attractiveness of a third place. Information

about third place amenities can be difficult to obtain and verify, but crowdsourced

and commercial POI data are potential sources that are increasingly being used to

collect location amenities for destination choice modeling [213, 214]. In the absence

of location-specific data, the presence of typical amenities could also be inferred

from the type of third place; libraries are quieter than cafés, co-working spaces are

more expensive but almost certain to have Wi-Fi, etc. An attractiveness measure

for each location type is likely to provide additional accuracy relative to a single

attractiveness measure for all location types while avoiding the data requirements and

computational complexity associated with location-specific attractiveness variables.

The individual-specific variables needed for an accurate third place choice model

are different from those needed for other trip purposes. For example, survey data

shows a strong variation in third place type choice across occupations, as shown in

Figure 4-4. The employment variables described in Section 4.3.2 should therefore be
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included whenever available. Details about job tasks are also likely to influence desti-

nation choice. A remote worker whose job consists primarily of high-focus individual

tasks might prefer quiet libraries over bustling cafés. Job characteristics also affect

location choice through the decision to work at third places with others. Someone

whose role involves developing creative ideas with their colleagues could be expected

to choose third places that are amenable to group collaboration. They may also be

less sensitive to travel time when choosing a third place if the destination choice for

group collaboration is negotiated between group members. Lastly, employer policies,

such as reimbursement for remote work equipment or co-working subscriptions would

certainly influence third place location choice.

Survey waves: November 2021 - June 2022, N = 27,364.

Figure 4-4: Differences in third place use by occupation category

The final challenge in modeling third place destination choice is estimating mod-

els using ground truth data. Travel diaries and other household travel surveys are
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certainly helpful and should be updated to include third place work as a trip pur-

pose. These surveys can be expensive to administer, however, and it is not feasible

to collect them on a continuous basis. Like other discretionary trips, third place trips

may not be part of a routine and therefore may not be captured by a single day or

week of travel patterns.

Mobile phone records and other location visitation data can be used as a source

of spatio-temporal information about trips to third places, however. These datasets

often cover longer time periods, allowing them to capture routine and exploratory

visits to third places. Extracting third place trips from the set of all trips in a mobile

phone record database is the primary challenge. Location type and the duration of

visits can be used to isolate third place trips, however.

Third place trips to co-working spaces are relatively straightforward to identify,

as co-working spaces do not have an alternative purpose. Trips to co-working spaces

that occur frequently at the same time and same day of the week over a certain

period could be filtered out as they are likely to be indicative of someone for whom

the co-working space is their employer’s primary business premises or an employee

of the co-working space operator.

Third place trips to public spaces are more difficult to isolate from other trips to

the same location. Coffee shops, restaurants, and libraries may be visited by remote

workers seeking a third place, but they are also visited by many other customers

whose primary purpose is not work. Applying a minimum trip duration threshold

for third place trips to public spaces is recommended. Additionally, a travel distance

threshold can be helpful. People visiting coffee shops several hours’ drive from their

homes are much more likely to be tourists stopping for a break than remote workers

electing for an extreme commute to a third place. Finally, time-of-day and day-of-

week filters are a useful tool; a three-hour trip to a restaurant on a Saturday evening
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is not likely to be a third place trip, but a visit from 1 PM - 4 PM on a Tuesday

could be related to work. Filtering characteristics are summarized in Table 4.6.

Table 4.6: Characteristics that can be used to isolate third place trips

Third place type Trip characteristic

Co-working space
Time of day
Day of week

Consistent weekly pattern

Public space

Time of day
Day of week
Trip duration
Travel time

The final third place type is the homes of friends and family members. Trips be-

tween residential locations are less likely to be included in mobile phone records for

privacy purposes, making them difficult to elicit from widely available data sources.

In addition, they are challenging to differentiate from other trip purposes using tem-

poral characteristics. A visit to a friend’s home to work remotely together could have

the same duration, time of day, and day of the week as a purely social trip to the

same location. Trips during traditional work hours are somewhat more likely to be

work-related, but not all remote workers are working full-time jobs that take place

during traditional work hours. To overcome this issue, it is recommended that future

travel surveys include a differentiation of trip purposes between social trips and trips

to conduct remote work with friends and family. In the meantime, the travel demand

for third place trips to the homes of friends and family can be approximated through

the distributions of stated preference data for trip distance, mode choice, departure

time, and trip duration.

To summarize, the utility functions for destination choice models for third place

trips should include a measure of destination attractiveness, determined by the third
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place type and possibly the characteristics of individual third places if available, as

well as employer and job task-related individual-specific variables. The model can be

estimated for co-working and public space trips using revealed preference data from

mobile phone records, offered by commercial providers such as SafeGraph. Third

place trips can be isolated from other trip types using destination characteristics as

well as the time of day, day of the week, and duration of the visit. Third place trips

to the homes of friends and family members cannot yet be identified through surveys

or available mobile phone records, and should be estimated at an aggregate level.

Applications of this approach to destination choice modeling for discretionary

work trips are demonstrated in the next four chapters of this dissertation. In Chap-

ter 5, mobile phone-based visitation data is used to create a probability distribution

for the destinations of co-working and public space trips. Then, in the absence of a

dedicated travel survey for third place trips, the destinations of general “socializing”

trips from a previous travel survey are considered as possible destinations for discre-

tionary work trips to the homes of friends and family members. Additional details

are provided in Section 5.2.

In order to model the ride-pooling service for trips with flexible destinations

(which includes discretionary work trips) in Chapter 6, an “attractiveness” measure

is generated for each potential trip destination. The case study involves a pool

of remote workers seeking to travel to a co-working place. Given that this is a

hypothetical future scenario for destinations with no observed demand data available,

the attractiveness of each destination is drawn from a uniform random distribution.

In the future, either revealed demand data for each destination or survey data could

be used to inform a quantitative measure of the attractiveness of individual co-

working places for each customer.

In Chapter 7, the capacity of a public transit network is evaluated assuming
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that some portion of the riders have flexible destinations. Again, an attractiveness

measure is needed for each destination station to ensure that the destination model

approximates existing demand patterns. In this case, origin-destination flow data

is available for the entire network. The attractiveness of each destination is cali-

brated using an iterative method to minimize the root-mean-squared error between

the observed visits to each destination and the estimated visits to each destination.

Finally, the case study in Chapter 8 involves estimating the demand for future shared

workplaces among remote workers. As the destinations do not currently exist, there

is no observed data that can be used to calibrate the attractiveness value for each

destination. The hypothetical scenario assumes that the shared workplaces will be

functionally identical with the same amenities, so the attractiveness measure is con-

stant across destinations.

4.4 Conclusions and policy implications

In recent years, remote work has shifted from a niche working arrangement to one

that is practiced by a broad swath of employees across many sectors of the economy.

This large cohort of remote workers generally has the freedom to decide where (and

to a lesser degree, when) to conduct their remote work, whether that is at home,

at their employer’s business premises, or somewhere else altogether. As a result,

work trips on remote work days have begun to resemble other discretionary trips,

but with an important difference: the travel choices associated with these trips are

strongly influenced by work considerations. Addressing the behavioral complexities

of discretionary remote work trips requires changes to the methods, theories, and

data used in travel demand modeling.

This chapter describes three steps to improving the capacity of travel demand
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models to capture third place travel behavior. First, introducing ZOIB regression for

estimating remote work preferences is proposed due to the mixed continuous-discrete

distribution. ZOIB regression is shown to provide behavioral insights into the effect

of different individual factors on preferences for fully remote work, hybrid work,

and fully in-person work arrangements that cannot be elicited by purely discrete

or continuous models. Then, a new set of remote-work related survey questions

is proposed for future travel surveys. Through the estimation of discrete choice

models for third place trip frequency, departure time, and mode choice, these new

variables are shown to influence the travel behavior of remote workers and improve

modeling accuracy. Finally, the actual destinations of third place trips have a strong

impact on transportation networks, but also on retail spending in neighborhoods and

the diversity of social interactions, among other social externalities. A data-driven

method for constructing and estimating a destination choice model for third place

trips is presented. Taken as a whole, these three model improvements provide a

holistic framework for estimating the overall travel demand created by third place

trips.

The theoretical and empirical results of this work have several insights for poli-

cymakers. First, it is crucial to add remote-work related questions to future travel

surveys in order to capture individual-specific factors that affect the demand for,

and characteristics of, third place trips. Recommended questions in each of the five

categories are presented in Table 4.2. Policymakers would benefit from the inclusion

of these variables in travel demand models, as they are likely to provide insights into

the effectiveness of policy tools for managing third place travel demand (e.g. tax

treatment of employer subsidies for co-working memberships). Second, surveys must

have new trip purpose categories for third place trips. Current practice in survey

question design is likely to result in mixing discretionary third place trips with gen-
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eral work trips or even social trips if the third place is a friend’s home. This could be

applied to general household travel surveys, but also user surveys of specific trans-

portation services such as public transit. Transit agencies could adjust service to

attract the emerging demand for third place travel, but only if they understand how

and when people are using their service to visit third places. Finally, the empirical

results show that driving remains the dominant mode for third place trips, but that

driving is less popular among urban residents. This effect is likely due to the greater

density of third places in urban areas, and the availability of alternative modes such

as public transit. Policymakers should explore methods for increasing the density of

third places and improving sustainable mobility options in suburban and rural areas

to encourage a sustainable mode shift for third place trips.

There are some limitations to this work and several opportunities for additional

research. The focus of this chapter was not on using complex, state-of-the-art models

for travel behavior, but rather to provide clear and concise evidence of the need for

different exogenous variables when modeling third place travel choices. Focusing on

a single third place travel decision (e.g. trip frequency) and incorporating remote-

work related exogenous variables into advanced choice models such as the integrated

choice and latent variable model (ICLV) is a promising area of research that is likely

to provide additional insights into the travel behavior of remote workers. In addition,

Section 4.3.3 proposes a method for estimating third place destination choices using

discrete choice theory and large-scale mobile phone data. However, due to a lack of

reliable ground truth data for third place trips, especially those to friends’ and family

members’ homes, no model can be estimated at this stage. This area of research

would greatly benefit from future empirical work to collect revealed preference data

specifically for third place trips.
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Chapter 5

The benefits and limitations of

remote work for reducing carbon

emissions

5.1 Introduction

Since the beginning of the COVID-19 pandemic, there has been considerable atten-

tion paid to the dramatic rise in working from home and the broader implications

for society going forward. However, the simple term “working from home” belies the

fact that many workers have been spending their remote work hours in a wide range

of places: coffee shops, libraries, co-working spaces, and friends’ living rooms. In

this study, the binary “home-or-office as work locations” paradigm is demonstrated

to be insufficient to capture the true dynamics of remote work, and can lead to an

overestimation of the benefits of remote work on two critical urban transportation in-

dicators: total demand for travel and travel-related carbon emissions. Furthermore,
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it is shown that mobile phone data can be used to estimate commuting patterns for

trips to non-home, non-work locations at a disaggregate level to facilitate long-term

transportation planning. Finally, the implications of these findings for urban land

use and transportation policy in the U.S. context are discussed.

From the beginning of the COVID-19 pandemic, there has been a strong research

interest in the sudden increase in remote work adoption. In a working paper titled

“Why working from home will stick”, Barrero et al. show that remote work represented

more than half of all worked hours in the United States during the height of the

pandemic (see Figure 1-2) [3]. The authors also find that remote work is expected

to represent more than 31 percent of all worked hours after the pandemic subsides,

a six-fold increase from 2018.

There has been a tremendous effort to understand the impact of remote work

on travel demand since the outset of the COVID-19 pandemic. Many studies have

used survey instruments to elicit preferences for remote work across demographic

groups during the pandemic’s various stages [215, 216, 217, 164, 218, 219, 220].

These surveys, while valuable for a range of research questions, only consider two

possible working locations: home and a fixed workplace. Another set of articles used

survey data to estimate statistical models for future commuting patterns, predicting

a significant decline in overall commuting demand [221, 166, 187, 222]. The models

can be used for predicting travel modes and the number of commuting trips during

non-remote working days, but each model assumes that remote work takes place

entirely at home.

The narrow home vs. office framing of previous remote work studies can produce

aggregate estimates of post-pandemic travel demand that ignore trips made to non-

home remote work locations (e.g. 13, 14, 15). Even before the COVID-19 pandemic,

it had been acknowledged that remote work was taking place in a variety of locations
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[204]. In the post-COVID era, Hensher et al. [222] finds that many employers are

beginning to embrace co-working spaces as an alternative to working from home,

and Beck and Hensher [223] points out that “working close to home” could be an

appealing work modality.

Past literature, adapting a term from Oldenburg and Brissett [224], has referred

to alternative remote work locations collectively as “third places” to differentiate

them from the home and traditional workplace [225, 226, 227]; for consistency that

terminology is also used here. Understanding the use of third places is critical not

only for travel behavior, but also for broad economic indicators such as employee

satisfaction, firm productivity, and commercial real estate demand.

To study the current and future use of third places, several questions have been

added to recent waves of the SWAA, a monthly survey of several thousand working-

age U.S. residents [228]. It is found that, after scaling the results to the demographics

of the country, 14.3% of total worked hours from November 2021 to March 2022

happened at a third place (see Figure 2-1). This represents 32.6% of all remote work

hours in the United States. After weighting hours by income, it is found that 17.3%

of wages in the United States are earned in non-work, non-home locations. The

survey also shows that the distribution of employee preferences for third places is

similar to their existing use of third places.

Reported working hours at third places are relatively evenly split between the

three categories included in the survey: public spaces (e.g. coffee shops or libraries),

co-working spaces, and the home of a friend or family member. Preferences for

third places are not evenly distributed across the population, however. For example,

the use of third places is more prevalent in urban areas than in suburban areas.

Similarly, the use of third places varies considerably by income group. It is clear

from the survey data that third places represent a significant proportion of remote
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work, with complex preferences that differ between demographic and employment

groups. Quantifying the contribution of these factors as they relate to remote work

preferences is the first step towards estimating the overall share of remote work as

well as the preferences for third places for a given population.

This chapter shows that assuming all remote work takes place at home results

in a significant underestimation of future travel demand and transportation-related

carbon emissions. Our survey results demonstrate that third places are the chosen

destination for a meaningful proportion of remote work commutes, and that those

additional trips are currently being ignored. Moreover, it is demonstrated that the

false assumption leads to a skewed prediction of the spatial distribution of travel,

as third place trips are typically shorter than a traditional commute and are more

likely to take place within neighborhood centers. This mischaracterization of travel

demand could lead to insufficient sustainable transportation infrastructure, such as

public transit or micro-mobility, to accommodate third place commutes. Ignoring

remote work trips to third places is also predicted to overestimate the benefits of

remote work with respect to reducing carbon emissions from commuting.

In this study, a large, continuous nationwide survey is leveraged to estimate

preferences for remote work and third place visits for different demographic and ge-

ographic groups using Zero-One-Inflated Beta (ZOIB) regression and k-means clus-

tering models. Then, it is demonstrated that mobility trace data collected from a

variety of sources can be used to estimate the characteristics of third place trips, in-

cluding destination and distance. Finally, the carbon emissions related to traditional

and third place commutes are computed. This procedure enables quantification of

the effect of third places on aggregate travel demand, spatial demand patterns, and

transportation-related carbon emissions across an urban area.

The future is inherently uncertain, so survey respondents were asked three dif-
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ferent questions about third place use. The first question asks respondents to report

their time spent working at a third place as a share of total work hours in order

to estimate commuting patterns if there are no further changes in working arrange-

ments. Then the survey asks about respondents’ plans for working at third places in

the medium-term future, assuming that the public health threat of the COVID-19

pandemic has subsided. This provides the basis for a second scenario with each re-

spondent’s best guess for the future, including any future changes that their employer

may be planning with regard to their working arrangements. Finally, respondents

are asked about their desired time spent working at third places in the future, re-

gardless of existing constraints, informing the development of a third hypothetical

scenario in which workers are given total freedom over workplace choice. For each of

the three scenarios, the travel demand and carbon impacts with and without third

place commutes are computed and compared against the pre-COVID baseline. This

results in seven different possible commuting patterns that can be ranked against

one another in terms of carbon emissions and total travel demand.

To the author’s knowledge, this study is the first of its kind to examine the

impact of third places on post-pandemic travel demand. It is also the first to develop

a method for forecasting the specific travel patterns resulting from an increase in

remote work at third places by merging various data sources including surveys and

mobile data.

5.2 Methods

A four-step process was used to predict changes in travel patterns. The first is a

ZOIB regression model estimated from the SWAA data to estimate individual shares

of remote work. Next, a k-means clustering model is trained using the SWAA data
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to determine how remote work is divided between the home and different third place

categories. Different questions from the SWAA survey provide an estimate for three

scenarios: current (2022) levels of remote work, employees’ desired levels of remote

work, and employers’ planned levels of remote work. Then, mobile phone record

data are used to create a model that predicts the distribution of third place commute

destinations based on the home census tract. Finally, the results are aggregated for

the entire urban area to generate multiple travel demand scenarios and calculate

the carbon emissions associated with each scenario. To illustrate the importance of

considering third places for remote work, a “Home Only (HO)” scenario is created

where all remote work takes place at home, and a more realistic “Spectrum of Work

Locations (SWL)” scenario where some remote work occurs at third places.

5.2.1 Data

There are three primary sources of data used in this analysis. The first is the SWAA

which is administered by a consortium of academic institutions [228]. The SWAA is

the source of information for future remote work location preferences and includes

demographic and employment data for each respondent. The second is the My

Daily Travel Survey conducted by the Chicago Metropolitan Agency for Planning

(CMAP) between 2018 and 2019 [229]. The CMAP survey includes detailed travel

and personal information for over 12,000 households in the Chicago area and is

available to the public. This is the source of information for existing (pre-COVID)

commuting patterns, which are then modified based on the mode and work location

changes predicted by the SWAA to produce an estimate of post-COVID commuting

patterns. Origin and destination locations for each trip are available at the census

tract level.
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The final source of information is SafeGraph, a data provider that aggregates

anonymized location data from mobile applications to provide insights about travel

and activity patterns. SafeGraph provides the locations of Points of Interest (POIs)

and relative visitation frequencies for retail businesses [230]. SafeGraph information

is used to determine the distribution of locations for trips by remote workers to third

places such as coffee shops and co-working spaces. Home locations for visitors in the

SafeGraph dataset are available at the census block group level.

Note that the CMAP survey is the only data source that is specific to the Chicago

area (the SWAA and SafeGraph are both national in scope). Many state departments

of transportation and Metropolitan Planning Organizations conduct similar surveys,

so these results are largely generalizable to other U.S. metropolitan areas subject to

data availability. The nationwide National Household Travel Survey could also be

used to conduct a similar case study for the entire country, although doing so at

the census tract or census block group level could present computational challenges.

Chicago was chosen to illustrate the methods presented in this study, as it represents

a very large urban area with high demographic and economic diversity.

5.2.2 Work location distribution and carbon impact

This study uses a four-step procedure to evaluate the impact of third places on

the demand for urban mobility at a disaggregate level. It begins with a baseline

household travel survey and seeks to update that survey to reflect changes in travel

behavior. In this case, the primary changes in travel behavior are the substitution of

traditional commuting trips with working at home or trips to third places. Specific

data sources and methods are used to estimate how the travel behavior of each

respondent in the baseline household travel survey change. Then, the results are
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aggregated to provide an estimate of the overall impact of these travel behavior

changes across the region.

The overall procedure is summarized in Figure 5-1. Each of the steps is explained

in detail in the subsections that follow.

Figure 5-1: Flowchart demonstrating the emissions estimation process.

This procedure is similar to the canonical four-step model for travel demand

forecasting [231]. First, the number of total in-person and third place commuting

trips for each individual is estimated, which is analogous to the “trip generation”

step. Then, the third place trips are assigned to specific destinations, much like the

“trip distribution” step of a traditional model. Mode choice is extracted directly from

the household survey data. Route choice information is not available, so the shortest

path with respect to travel time is assumed.
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Work location choice prediction (trip generation)

To estimate how commuting patterns and carbon emissions could change as a result

of working from third places, first the distribution of location choices for remote

work must be predicted. As discussed earlier, opportunities for remote work and

preferences for third places are highly heterogeneous. For that reason, a disaggregate

approach is applied wherein work location choices are predicted for each individual

using employment and demographic information. A model is developed to predict,

given a commuter with a specified set of demographic and employment variables, the

fraction of pre-COVID commuting trips that fall into the following categories: A)

eliminated due to working at home, B) have a modified destination due to working

at a third place, and C) unchanged due to working at the employer’s work site. The

trips within Category B) are further distributed among the different types of third

places: public spaces, friends’ homes, and co-working spaces.

The scaled SWAA responses are scaled to match the Current Population Survey

(CPS) based on age, sex, education, and earnings. An extended description of the

SWAA methods and data is included in Section 3.3; relevant details for this chapter

are included here. SWAA responses from November and December 2021 (N=7,950)

are used as training data for the prediction model. The full list of SWAA employment

and demographic variables used in the model are presented in Table 5.1. Home ZIP

Population density was split into three categories: Urban (> 3000 residents per

square mile), Suburban (1000 − 3000 residents per square mile), and Rural (< 1000

residents per square mile).

A ZOIB regression model was estimated using the SWAA data in order to predict

the current, desired, and planned percentages of remote work for each CHTS respon-

dent. ZOIB regression is a mixture model typically used to model proportion data
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Table 5.1: Input variables for work location choice model

Variable Variable Type
Sex Categorical
Age Continuous
Education Continuous
Household Income Continuous
Home ZIP Population Density Categorical

where a qualitative difference between the populations with a 0% response, a 100%

response, and a response between 0% and 100% is expected. This condition exists

for the distribution of remote work preferences. The population with 0% remote

hours may represent a much different population than those working 1% or more of

their hours remotely. As an example, the 0% population may work in a role where

remote work is not possible (e.g. grocery store clerk, butcher, automotive mechanic),

making it qualitatively different from the rest of the population. Additionally, 100%

remote work enables a much different lifestyle than 90% remote work by untethering

the worker from the need to live near an office. As expected, the SWAA preference

data is inflated at 0% and 100% of remote work hours, as shown in Figure 4-2. The

parameters of the three ZOIB model processes are estimated using Bayesian inference

and presented in Table 5.2.

While only one step in the aggregate travel demand process, the estimation of the

ZOIB model provides several interesting insights into the dynamics of remote work.

The estimated parameters can be used to determine the effect of the independent

socioeconomic variables on the probability of choosing 0% remote work, 100% remote

work, and the mean of the Beta distribution (denoted by 𝜇) if the proportion is

neither 0% nor 100%. The results are shown for current, employee-desired, and

employer-planned levels of remote work in Table 5.2. Note that the categorical

variables “sex” and “population density” were set to Male and Urban for the reference
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Table 5.2: ZOIB regression results for the proportion of remote work

Variable
P(𝑥 = 0)

No
Remote

P(𝑥 = 1)
Fully

Remote

P(0 < 𝑥 < 1)
Hybrid
Work

𝜇
Hybrid

Remote %

E[𝑥]
Combined

Effect
Current Remote Work Share
Median 20.19% 18.83% 60.99% 55.38% 54.00%
Female 4.27% 6.95 % -11.22% - 0.23%
Suburban 17.75% -2.46% -15.29% -2.28% -7.75%
Rural 17.75% -2.46% -15.29% -2.21% -12.28%
Age (years) 1.00% 0.13% -1.14% -0.12% -0.60%
Education (years) -3.11% 0.11% 3.22% - 1.82%
Income ($10k) -2.86% 0.06% 2.80% 0.16% 1.81%
Employee Desired Remote Work Share
Median 18.08% 21.96% 59.96% 60.73% 58.95%
Female -0.61% 6.67 % -6.06% - 2.72%
Suburban - - - -1.70% -0.44%
Rural 8.87% -0.83% -8.04% -3.75% -6.74%
Age (years) 0.57% 0.02% -0.60% -0.13% -0.40%
Education (years) -3.37% 0.20% 3.17% - 2.27%
Income ($10k) -1.59% -0.09% 1.68% 0.21% 1.06%
Employer Planned Remote Work Share
Median 28.41% 15.85% 55.74% 60.89% 49.94%
Female - - - - -
Suburban - - - -2.30% -0.54%
Rural 10.74% -3.17% -7.57% -4.05% -8.73%
Age (years) 0.59% 0.01% -0.60% -0.10% -0.40%
Education (years) -2.65% 0.10% 2.76% - 1.69%
Income ($10k) -1.89% 0.02% 1.86% 0.15% 1.27%
Note: the - symbol represents a parameter that is not statistically significant
at a 95% confidence level.

group, respectively, and the median results are not scaled to the US population

average.

For the current remote work model, the negative coefficients for the Education

continuous variable with respect to “No Remote” and “Fully Remote” suggest that

people with more education are more likely to work a hybrid work schedule. This
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model also indicates that women are more likely to be working either fully remotely

or fully in person than men. Insignificant parameters in the employee preference

model and employer plan model also have interesting implications. The insignifi-

cance of the Suburban categorical variable implies that, unlike high and low-density

areas, living in a moderate-density area does not have a statistical effect on prefer-

ences for different working arrangements. Similarly, in the employer plan model, the

insignificance of the Female categorical variable suggests that gender does not play

a statistically significant role in employers’ plans for remote work.

A k-means clustering approach is also trained on SWAA data to distribute this

remote work share among different locations, including home, public spaces, friends’

homes, and co-working spaces. The remote work location choice probability dis-

tributions for each of the clusters are shown in Figure 5-2. The k-means clustering

approach resulted in clusters that were largely differentiated by the home ZIP popula-

tion density categories, with corresponding variations in the remaining socioeconomic

and employment variables. Remote workers in the “urban” cluster are much more

likely to work at a third place than those in the “suburban” and “rural” clusters.

These results seem sensible; low-density land uses in rural and suburban areas make

it more difficult for residents to access third places for remote work.

Assigning third place destinations (trip distribution)

Creating new trips to third locations for future commuting patterns requires strong

assumptions, but actual data were used wherever possible. There are three categories

of third places in the SWAA questionnaire: public spaces, co-working spaces, and

the home of a friend or family member. As the specific locations were not included in

the survey, it is not possible to compute the distribution of travel distances for each
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Figure 5-2: Current, employee desired, and employer planned remote work location
distributions by cluster

of these location types directly. An alternative means of estimating trip distances is

therefore needed.

SafeGraph data uses mobile phone records to estimate the home locations of visi-

tors to an extensive list of retail establishments. Establishment type is also included,

so the distribution of visits from a given home location (at the census block group

spatial resolution) to different establishment types can be determined. This method

is used to create a distribution of public space and co-working space visit probabil-

ities and the associated travel distances for every home census tract in the Chicago

Metropolitan Area. The expected value of public space and co-working space trip

distance for each home census tract can then be estimated.
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An initial investigation found that third place trips were longer than expected

due to noise in the SafeGraph data. Unlike co-working spaces, visits to public spaces

may be conducted for a variety of non-work reasons. Visitors from distant suburbs

may stop at a cafeás part of a shopping trip, for example. Since the SafeGraph

visitation data cannot be differentiated by trip purpose, a heuristic filter was applied

to ensure that the estimated travel distances for remote work at public spaces reflect

reasonable commuting behavior. The filter removed any public space trips that

exceed the length of the traditional commute to the employers’ workplace by more

than 1 kilometer, as it is unlikely remote workers would choose to travel further than

their typical commute to work remotely from a public space.

SafeGraph data does not contain information about visits to residential locations,

so an alternative method is needed to estimate trip distances to the homes of friends

and family members. Rather than SafeGraph data, the CMAP survey was used as

it contains information related to the purpose of each trip. Trips with the purpose

of “socializing with friends” and “socializing with relatives” were used as a proxy for

visits to the homes of friends and family. While socializing can take place in non-

home locations, the inclusion of other trip purposes such as “dining out”, “shopping”,

“recreation” and “special event” is assumed to reduce the number of non-home-based

social events in the chosen trip categories. Aggregating the CMAP survey social trip

distances for each home location census tract therefore provides a reasonable estimate

of the distribution of travel distances for trips to friends’ and family members’ homes.

The results for one-way trip distance by location type shown in Table 5.3 demon-

strate that third place commutes are typically much shorter than commutes to an

employer’s workplace. The reduction in commuting distances for third places and the

elimination of commutes altogether for at-home working days are the two primary

drivers of commuting-related carbon emissions reduction under widespread remote
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work. If third place commuting distances were reduced further, then future carbon

emissions from commuting would be even lower.

Table 5.3: Average one-way commuting trip distance by work location

Location type Distance (km)
Employer workplace 10.3
Public space 3.5
Co-working space 10.8
Friend or family member’s home 6.5

The average commuting distances to co-working spaces remain relatively high due

to the concentration of available co-working spaces in the central business district

of Chicago. The average commuting distance to public spaces, while the shortest

of any location category, remains beyond a comfortable walking distance for most

people. Policies to reduce the average travel distances to third places would include

zoning and incentives for locating new remote work-friendly public spaces and co-

working spaces within residential areas. Figure 5-4(a) shows how census tracts to

the west and south of downtown Chicago are not estimated to receive many third

place commuting trips due to a lack of available destinations. Introducing new

third places in such neighborhoods could be expected to have a disproportionately

high impact on carbon emissions by offering a nearby destination for local third

place commuters. Encouraging remote workers to use existing public spaces such as

libraries and community centers would have a similar effect.

Travel demand impacts

Once the predicted change in commuting frequency and location distribution at

the individual level is determined, the aggregate effects on travel demand can be

calculated. The 2018-2019 observed commuting distances are used as a baseline
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against which the predicted distances are compared. Two scenario categories, HO

and SWL, are compared to demonstrate the importance of including third place

commutes in overall travel demand estimates. The overall change in aggregate travel

distance and travel distance by mode is reported for both the HO and SWL scenarios.

Furthermore, the overall change in trips by origin and destination is visualized by

census tract for each scenario to identify spatial trends in third place commuting

patterns.

Carbon emissions

Two primary factors contribute to the change in commute-related carbon emissions

as a result of increased flexible work. The first and most critical is the anticipated

reduction in commuting distance that results from working at home and third places

rather than a fixed employer-specific workplace. When calculating distance, it is

assumed that trips to third places follow the shortest possible route. This is a con-

servative assumption, as a small number of travelers may choose to deviate from the

shortest path. The results presented in this chapter therefore represent an estimate of

the lower bound of commuting-related carbon emissions when third place commutes

are included.

The second factor that affects commuting-related carbon emissions is the change

that arises from shifting from one commuting mode to another, as travel modes have

significantly different emissions profiles. A targeted question was included in the

January, February, and March 2022 waves of the SWAA to determine whether remote

workers use different travel modes depending on their choice of work location. The

survey found that individual remote workers almost always use the same travel mode,

whether commuting to a traditional workplace or one of the third place categories.
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The aggregate mode share for traditional workplaces and third places are nearly

identical. As such, it is assumed that remote workers use the travel mode reported

in the travel survey, regardless of work location choice. The changes in carbon

emissions from commuting are therefore influenced only by commuting distance.

Using the difference in travel distance by mode from the previous section and

multiplying by the average carbon emissions per unit distance by travel mode for

the Chicago area, the total change in carbon emissions for both the HO and SWL

scenarios is computed. The estimated CO2 emissions per passenger-mile for each

travel mode provided by U.S. Department of Transportation Federal Transit Admin-

istration [232] is utilized to compute the total carbon emissions.

5.3 Results

Results were generated using a systematic data-driven approach for estimating the

new demand for travel under widespread remote work. First, the 2019 Chicago

Household Travel Survey (CHTS) is used to examine commuting patterns before

the pandemic. Then, to predict the individual levels of remote work and remote

work location choices that affect commuting patterns, data from the longitudinal

SWAA survey is incorporated. Finally, mobile phone records are combined with

home location data to estimate the destinations of third place commuters.

Carbon emissions from commuting. As remote work arrangements have in-

creased from 4.8% of worked hours pre-COVID to around 31.6% in 2022, there has

been a significant decrease in carbon emissions related to commuting as more peo-

ple are working from home or at third places near their homes. Table 5-3 presents

the carbon emissions results for the six constructed scenarios and one pre-COVID

baseline scenario. The pre-COVID baseline was computed directly from CHTS data.
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The constructed scenarios include three HO scenarios where people work only from

home for remote work, and three SWL scenarios that consider commutes for remote

work at third places. Within the HO or SWL scenarios, travel patterns are estimated

based on 1) current remote work rates and location choices, 2) employees’ desired

work-from-home rates and location choices, and 3) employers’ planned work-from-

home rates and location choices.

Before discussing the results, it should be noted that this study is concerned

only with estimating the carbon impact of changes to the length and frequency of

commuting trips to and from work as a result of the widespread increase in remote

working. It does not consider other important components of the overall influence

of remote work on carbon emissions, such as non-work travel and building emis-

sions. The effect of remote work on the propensity for non-work travel has long been

debated. Previous studies have found that under certain conditions, some remote

workers conduct more non-work travel than those who work entirely in-person (e.g.

de Abreu e Silva and Melo [73], Zhu et al. [74], Su et al. [75]), but other studies have

found little-to-no effect under different conditions (e.g. Choo et al. [76], Kim et al.

[78], de Abreu e Silva and Melo [77]). O’Brien and Aliabadi [150] provides an excel-

lent summary of previous research on the various “rebound effects” of remote work,

including changes to office and home energy consumption. Their literature review

shows that, like non-work travel, the impact of remote work on energy consumption

for buildings is mixed and highly dependent on context and assumptions. While our

study generates new insights into possible changes in commuting-related travel in

the post-COVID era, it is but one piece of a holistic investigation into the overall

carbon emissions impacts of widespread remote work.

The model findings show that carbon emissions related to commuting have de-

creased by 31.1% from the pre-COVID level. When third places are considered,
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people tend to work more at these locations and travel more while working remotely.

For home-only scenarios, people generally prefer to work more flexibly from home

rather than in the office. Employers are planning to have their employees work more

frequently in the office, so scenarios based on employer plans produce fewer emissions

relative to the employee preferences or current remote work scenarios. The results

clearly demonstrate that it is important to consider third places when evaluating the

impact of remote work on commuting, as not doing so can lead to an overestimation

of the reduction in carbon emissions. In the current scenario, which assumes remote

work arrangements remain constant going forward, ignoring third places results in

an underestimation of carbon emissions by 16.6%.

Spatial travel patterns. By combining the actual work locations from the house-

hold travel survey with synthetic trips from mobile phone data, the model also esti-

mates the disaggregate origin-destination patterns for each demand scenario. Figure

5-4(a) illustrates the change in the number of visits to each census tract from the

pre-COVID baseline scenario to the current travel pattern (i.e. “Current with SWL”

scenario). A “donut effect” can be observed, meaning that there is a decrease in vis-

its to the city center and outskirts, but an increase in visits to near suburban areas.

These spatial patterns are reminiscent of the donut effect observed by Ramani and

Bloom [233] with respect to housing prices after COVID-19. These results suggest

that people are traveling more often to third places located in dense residential areas,

rather than commuting to offices located in the commercial core.

Figure 5-4(b) illustrates the difference in visits between the current scenario with

SWL and the current scenario with HO. It’s clear that ignoring third places leads to

the undercounting of many commuting trips, particularly in the densely-populated

and amenity-rich northern part of Chicago.

Figure 5-4(c) shows the difference in visits between the current scenario and the
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Scenario Annual Carbon Emission
(Million MT) Scenario Annual Carbon Emission

(Million MT)
Current (HO) 1.48 (−47.7%) Current (SWL) 1.95 (−31.1%)
Desired (HO) 1.47 (−48.1%) Desired (SWL) 1.97 (−30.3%)
Planned (HO) 1.66 (−41.3%) Planned (SWL) 2.10 (−25.8%)

Pre-COVID Baseline 2.83

Figure 5-3: Carbon emissions for different commute-based travel demand scenarios

employer-planned scenario that takes third places into account. The employers in

this scenario are planning to have their employees work in the office more frequently,

resulting in more trips to the city center and outskirts and fewer trips to suburban

areas. This is in contrast to the “donut effect” observed in Figure 5-4(a).

Figure 5-4(d) shows the difference in visits between the current scenario and the

employee-desired scenario that takes third places into account. It is interesting that

people prefer to work in the city center, outskirts, and certain suburban areas. These

mixed results that in an ideal world, people would generally prefer to work slightly

more at locations other than their homes, with some opting for the office and others
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choosing third places.

5.4 Discussion

The results of this study demonstrate that third place commuting trips are an impor-

tant component of overall travel demand within a region, and should not be ignored.

While remote work does reduce commuting overall compared to the pre-pandemic

baseline, the impacts of remote work on commuting travel are somewhat dampened

by trips to third places. In addition, there is tension between employer plans and

employee desires for remote work in the future. If the tension is resolved in favor of

the employers, then future travel demand is expected to be somewhat higher than in

a compromise or employee preference-driven scenario. Third place commuting affects

not only the aggregate level of travel and emissions, but also the spatial distribution

of each measure. These results have significant implications for transportation and

land use planning going forward.

While this study demonstrates that there are some negative externalities related

to third place commuting, the use of third places for remote work can have many

positive effects on a community. First, there is a travel cost for the commuter associ-

ated with visiting a third place, and many third places charge a fee (e.g. co-working

space) or require a purchase (e.g. café) by the user. The fact that people choose to

conduct remote work at third places despite these costs suggests that third places

have some positive utility for remote workers relative to working from home. The

revealed utility could be related to productivity, such as a less distracting environ-

ment compared to home or a stronger Wi-Fi connection. It might also be related to

the opportunity to socialize or network with other remote workers, which can lead

to spillover effects that boost the productivity of those involved. Remote workers
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who choose to work at third places also support the third places and surrounding

neighborhoods through economic activity.

In a sense, the use of third places represents a compromise between working from

home and working in a centralized employer-provided workplace. Remote workers

benefit from a more social environment and avoid some of the negative aspects of

working at home, while also limiting their travel costs and the impact of their travel

on others through shorter commutes. The congestion and emission externalities of

third place commutes can also be mitigated with intentional land use and transporta-

tion planning. This study found that suburban and rural residents are less likely to

use third places and travel further when they do. Encouraging the development

of third places outside of the city center would provide nearby options for remote

workers in those areas, allowing them to reap the benefits of third places for remote

work while reducing overall travel. The congestion externalities can be mitigated

by providing sustainable transportation alternatives for third place trips to encour-

age the use of low-emissions modes. These alternatives could include better transit

connections between residential areas and nearby town centers, or providing better

micro-mobility, cycling, and walking infrastructure near third places. Third place

commutes are also less likely to occur during peak hours compared to a traditional

commute, so their impact on peak roadway and public transit congestion is of less

concern.
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Figure 5-4: Changes in visits at census tract level between scenarios
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From a more general perspective, this chapter proposes a rapid and inexpensive

data-driven framework for revising travel demand estimates in the wake of sudden

system-wide demand shocks. It leverages widely available, nationwide data sources

that can be collected more quickly and with lower costs than a household travel

survey. The author does not claim that the approach described herein is sufficient to

replace household travel surveys altogether, as household surveys capture the gran-

ular data on individual trips needed to inform the data-driven approach. However,

it provides a useful first-order estimate of demand pattern changes that may occur

in the years between household survey waves.

Many of the limitations of this study are related to data availability. Mobile

records are used to infer destinations for third place trips, but future studies could

collect these destinations directly from the survey respondents for an improved un-

derstanding of preferences for third places. This area of research would also benefit

from an exploration of alternative model structures for predicting remote work loca-

tions. The zero-one-inflated beta regression and clustering algorithms used in this

study were selected for their accuracy, simplicity, and interpretability, but more com-

plex models could be implemented in future research if suitable. Finally, future work

could explore policy prescriptions for reducing the impact of third places by optimiz-

ing zoning for third places near residential areas or developing operating strategies

for public transit systems to serve third place commuters.
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Chapter 6

Evaluating the travel impacts of a

shared mobility system for remote

workers

6.1 Introduction

For the past century, individual commute patterns have typically involved a fixed

destination that is stable over long periods. We are currently experiencing a pro-

found shift in the nature of work, however. What was once a gradual trend towards

increased remote work [234], driven by improvements in digital communication tech-

nology, the rise of the gig economy, and the emergence of co-working spaces was then

suddenly and dramatically accelerated by the COVID-19 pandemic. A recent survey

found that in 2023 and beyond, nearly a third of worked days in the United States

are expected to be remote, a share that is more than six and a half times greater than

the pre-pandemic average [3]. The same study finds that approximately one-third
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of remote work in late 2021 and early 2022 was conducted outside the home. Beck

and Hensher [101] refer to this arrangement as “Working Close to Home”. Figure 2-1

presents the distribution of full-time worked days in the United States by location;

non-home remote locations include public spaces, co-working spaces, and friends’

homes.

Even before COVID-19, some employers allowed staff to choose among several

work locations on a day-to-day basis, including co-working spaces [235]. This dis-

tributed office model is expected to become more popular in the future. A recent ar-

ticle [236] argues that employers should allow “hyper-local teams to choose a location

based on their shared preference” to boost productivity and create “new relationships

within and among organizations.” When multiple work locations are available, em-

ployees benefit from the opportunity to select a workplace that matches both their

work and travel preferences. Innovative office solutions have quickly emerged to serve

remote workers with flexible work locations; WeWork, a major co-working operator,

has recently begun offering an all-access service where subscribers can choose to work

from any location at any time [237]. There has been little innovation or research,

however, regarding innovative mobility services that could serve remote workers with

flexible work locations.

In this chapter, a new analytical framework is introduced to enable the simula-

tion of a shared mobility system serving remote workers with multiple possible work

locations. First, a novel matching algorithm is proposed that incorporates flexible

destinations, location capacity constraints, and team member co-location constraints.

The impacts of these remote work constraints and objectives on ride-pooling adop-

tion, quality of service, and total travel demand are then explored for the first time

in the literature through an experiment with real ride-hailing data from Manhattan.

Finally, the implications of the results for future shared mobility providers, employer
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remote work policies, and travel demand management are discussed.

Remote work locations represent an upending of the traditional travel demand

modeling paradigm, wherein routine work trips are the anchor for daily travel pat-

terns. In the past, urban mobility services such as public transit have been designed

around serving stable commuting trips [238]. These designs may not fit the needs of

commuters with remote work locations who will have many options for how, where,

and when to travel. The benefits of remote work will only be realized if the mobility

ecosystem can adapt to the new demands of remote work.

For example, one issue faced by remote workers with flexible work locations is

coordinating the location of team members who are working on a collaborative task.

Mobility services could respond by offering to arrange a location choice for multiple

individuals that balances productivity considerations with travel costs. Other tasks,

such as meeting a client or designing a product prototype, might need specialized

amenities that are only available at certain work locations. A new terminology,

“dependencies”, is proposed to refer to these remote work constraints that must be

incorporated into travel decisions. Employers would benefit from a mobility platform

that can accommodate dependencies while arranging efficient travel for employees.

Moreover, these dependencies will impact the destination choices of remote workers,

affecting aggregate travel demand.

Providing mobility services that can meet these new demands is very challeng-

ing due to the number of possible dependencies: relationships between individuals,

the characteristics of available destinations, task-related constraints that change over

time, and so on. Exploring how these complex relationships affect the spatial distri-

bution of travel demand will require the design of new analytical tools. Furthermore,

the factors that affect workplace location choice include both travel and work prefer-

ences, two areas of study that are not often linked. Bridging the gap between travel
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behavior and organizational behavior is critical to preparing mobility systems for the

future of work.

6.2 Literature review

Remote work has long been of interest to transportation researchers, but few analyt-

ical models connect remote work and transportation. The impacts of “teleworking”

on urban travel were investigated as early as the 1970s; a report by Mokhtarian [57]

and a review by Nilles [58] provide a good summary of early empirical research. Re-

cent changes in commuting patterns are expected to have a significant impact on the

demand for travel along two important dimensions. First, a reduction in the overall

volume of peak hour travel. Beck and Hensher [101] predict a 20% reduction in urban

core commuting post-pandemic. Second, a shift in the spatial distribution of demand

away from commercial centers towards neighborhood centers, as remote workers have

been shown to choose destinations that are closer to home than traditional commuters

[75]. Additional empirical research includes studies of how remote work has affected

road congestion in Iran [68] and Sweden [69]. A group of organizational behavior

papers provides insight into the productivity considerations for remote work and co-

working, but none include a transportation component [109, 110, 121]. There has

also been research into the urban planning and real estate implications of flexible

and remote work, with limited discussion of transportation [239, 240].

One paper was found that included a simulation of a transportation system with

remote work locations [86]. The authors use an agent-based regional travel demand

model to evaluate the effect of remote workplaces on commuting distances. Interest-

ingly, they find that requiring the co-location of teams can lead to a worse outcome

than the status quo under certain conditions. The study does not include any math-
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ematical modeling or productivity considerations, however.

Low occupancy ride-hailing trips represent a tremendous and problematic under-

utilization of one of society’s most expensive and in-demand resources: the road

network. Most ride-hailing vehicles have a capacity of four passengers or more, yet

the average occupancy is just 1.3 passengers [241]. Ride-pooling is a ride-hailing

service where multiple customers can be served by the same driver at the same time.

This chapter uses the ride-pooling mode to study the effects of remote work on

transportation.

The primary areas of ride-pooling research are developing algorithms to improve

operations and exploring supply and demand dynamics. A recent paper provides

an excellent overview of the dynamics of ride-hailing platforms and their interac-

tions with other urban mobility systems [242]. Mourad et al. [243] survey research

into optimization techniques for shared mobility, which includes ride-hailing, while

Agatz et al. [244] review the literature in optimization for ride-hailing platforms

specifically. Ke et al. [245] explores the relationship between fleet size, maximum

detour constraints, fare price, and other variables in a ride-pooling market. Other

ride-pooling research studies the social dynamics of sharing rides [246, 247].

In the past five years, a small number of papers have investigated the specific

problem of ride-pooling with flexible destinations, suggesting a nascent but active

subfield of research. Wang et al. [248] develops a matching algorithm that consid-

ers multiple destinations for each passenger but treats alternative destinations as

equivalent from the traveler’s perspective. Such a framework is not consistent with

ride-pooling research such as Wang et al. [249], which shows that perceived util-

ity is the primary driver of decisions about pooled rides. Subsequent studies take

a similar approach, where passenger utility is not considered during the destina-

tion assignment process. Mahin and Hashem [250] develop a pruning technique to
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maximize ride-pooling, while de Lira et al. [251] test a new heuristic algorithm, find-

ing that flexible destinations and activity schedules increase pooled rides by up to

55%. Khan et al. [252] develop a method of matching trips with flexible destinations

using Steiner Trees to identify possible meeting points. Ride-pooling with flexible

destinations based on a utility-maximization theory of travel behavior remains an

unexplored research direction.

6.3 Remote work dependencies

First, a vocabulary is needed to categorize the relationships between people and

places that affect work location choices. As proposed earlier, the term “dependency”

will be used to refer to such relationships. Dependencies can exist between a person

and workplace amenities (“location dependencies”), such as the requirement that a

location includes a meeting room. Dependencies can also exist between a person and

other people (“associate dependencies”). These associates might be coworkers needed

for a face-to-face brainstorming activity, but also people with similar professions,

people who work in the same industry, or even friends. Dependencies can be hard

constraints or soft constraints (desirable but not necessary). They can be enforced

by employers (top-down) or requested by individuals (bottom-up).

Second, it can be helpful to list common remote working arrangements, although

any such list could never be considered exhaustive. Remote working arrangements

can be considered a location-associates dyad. Working locations include spaces that

are intended to be workplaces (corporate office, home office, co-working space) and

those that facilitate work as a secondary purpose (café, library, community center).

Associates could include co-workers, friends, family, people with a similar profession,

and so on. The relationship between the individual and these groups can be im-
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portant for productivity or personal utility. Arrangements are constructed from a

combination of one location and any number of associates. For example, a traditional

working arrangement is the corporate office + co-worker pair. During the pandemic,

many people became familiar with the home + no associates arrangement. Indus-

try meetups, an arrangement where professional groups organize a collective remote

work and networking event in a rented workspace (i.e. co-working space + people

with a similar industry) have been popular for some time [253]. There are many such

combinations possible, each with different implications for mobility and productivity.

Finally, an analytical framework can now be established for transportation supply

models that capture remote work dependencies. Each class of transportation mode

has many models for optimizing service delivery, and each of these models interacts

differently with the remote work dependencies. This framework can be represented

as a conceptual table with supply models on the vertical axis and remote work de-

pendencies on the horizontal axis, as shown in Table 6.1. Each of the cells represents

a possible supply-demand model that includes the influence of remote work char-

acteristics on a specific travel mode. The numbered cells are addressed in the case

study that follows.

The capability of this structure to represent realistic scenarios is illustrated through

a ride-pooling case study, which is just one element within the broader framework.

The methods introduced in the case study apply to any mobility system where one

or more passengers are matched with a vehicle in real-time (e.g. demand-responsive

transit, car-pooling, shared autonomous vehicles). First, a variable demand model

is introduced to capture the choice between pooled and exclusive rides. Then a new

ride-pooling supply model that permits multiple destination options and facilitates

the inclusion of remote work dependencies is developed. Finally, new constraints

and objective function terms are proposed to capture the location and associate
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Travel mode
Remote work characteristics

Flexible
destinations

Location
dependency

Associate
dependency Other

Public Fixed route transit
Flexible transit

Shared

TNCs and taxis
Ride-pooling I II III
Shared AVs
Micromobility

Private

Active travel
Private gas car
Private electric car
Private AV

Table 6.1: Conceptual table for the mobility and remote work analytical framework

dependencies.

6.4 Adding dependencies to shared mobility models

Now that a vocabulary for describing remote work dependencies and arrangements

has been established, this section demonstrates how to incorporate them into a ride-

pooling matching model in order to evaluate their impact on the transportation sys-

tem. Dependencies affect demand, and because the supply is responsive to demand,

they ultimately affect supply as well. This requires three substantial modifications to

existing ride-pooling models, which are represented by Roman numerals in Table 6.1.

The first set of modifications (Cell I) is simply to create a ride-pooling matching

model that allows the passenger to choose between multiple alternative destinations.

As discussed in the Literature Review section, previous models consider destinations

to be fixed, or to be controlled by the platform.

The second modification (Cell II) is to add a location dependency to the supply
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model. In this case, a scenario where remote workers would like to visit one of

several co-working spaces, but there is a limited number of available workplaces

at each location, is considered. The ride-pooling platform must incorporate these

capacity constraints when finding an optimal ride-pooling matching arrangement for

remote workers. This location dependency is used to explore the travel implications

of co-working space capacity and geographic location within an urban area.

The third modification (Cell III) is to add two different associate dependencies:

hard constraints and preferences. The hard constraint represents a requirement that

different combinations of people (members of the same project team, for example)

must work in the same location, but the choice of location is flexible. The preference

dependency can be modeled by assuming that the ride-pooling platform receives a

small premium for arranging rides such that certain combinations of employees work

in the same location. This assumes that the employees perceive a benefit from being

co-located with their team members and are willing to compensate the ride-pooling

platform a small amount in exchange for that benefit. One could also imagine an

employer bearing this additional cost through reimbursement to encourage face-to-

face interactions between remote employees. The practice of reimbursing travel costs

for remote workers to get together in person has recently been adopted by several

large employers [254]. This dependency provides a connection between organizational

behavior and transportation outcomes to demonstrate how remote work policies can

impact travel patterns.

6.4.1 Adding flexible destinations (I)

There are two distinct components involved in adding flexible destinations to a shared

mobility matching algorithm. Existing algorithms must be adapted to allow vehicle-
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customer matching across several possible destinations. In addition, there must be

a choice model to capture the customer’s choice of a single destination from a set of

possible destinations once the trip characteristics are known.

Destination choice model

In the ride-pooling case study, total travel demand is fixed but individual customers

(“agents”) can choose between a pooled ride and an exclusive ride. Consider a set of

agents 𝒜 indexed by 𝑗 and a set of all pooled and exclusive trips 𝒯 indexed by 𝑖.

Note that in this chapter, the term “trip” is used to denote a supply-side variable:

a vehicle trip that is either a pooled ride (multiple passengers) or exclusive ride. It

should not be confused with a passenger journey between an origin and destination,

which is also described as a “trip” in other contexts. All notation used in this chapter

can be found in Tables 6.2 - 6.4.

Some agents have a fixed destination, while others indicate a willingness to con-

sider multiple alternative destinations. These alternative destinations could represent

several decentralized offices operated by the agent’s employer, a set of co-working

spaces, or even nearby libraries or cafés. These alternative destinations could be

served by either a pooled or exclusive ride. To model the choice between different

ride types (pooled vs. exclusive) and different destinations, a mixed logit discrete

choice model is introduced. The mixed logit discrete choice model has been found to

provide a reasonably good fit for the mode choice between exclusive and pooled rides

[255]. Our model differs from existing ride-pooling choice models by incorporating a

destination utility term to represent the traveler’s varied preferences for alternative

destinations. It also introduces a deterministic pricing model for the pooled ride

discount.

178



Notation Definition
𝒜 Set of all agents
𝑗 Agent index
𝒟 Set of all destinations
𝑑 Destination index
𝒯 Set of all trips
𝑖 Trip index
𝒱 Set of all available vehicles
𝑘 Vehicle index
ℰ𝐴𝑇 Set of agent-trip pairs in the shareability graph
ℰ𝑉
𝑖 Set of vehicles that can serve trip 𝑖

Table 6.2: Notation for sets and set indices

Notation Definition
𝑉𝑖𝑗 Deterministic utility of trip 𝑖 for agent 𝑗 (utility)
𝑣𝑖𝑗 Destination utility derived from trip 𝑖 for agent 𝑗 (utility)
𝑐𝑖𝑗 Exclusive ride fare price for trip 𝑖 charged to agent 𝑗 ($)
𝑐𝑠𝑖𝑗 Pooled ride discount of trip 𝑖 for agent 𝑗 ($)
𝑡𝑖𝑗 Shortest path travel time for agent 𝑗 on trip 𝑖 (min)
𝛿𝑖𝑗 Pooled ride detour of trip 𝑖 for agent 𝑗 (min)
𝜁𝑖 Binary pooled ride indicator for trip 𝑖 where 𝜁𝑖 = 1 if trip 𝑖 is a

pooled ride
𝛽1 Cost coefficient (utility/$)
𝛽2 Time coefficient (utility/min)
𝛽3 Sharing penalty (utility)
𝑈𝑖𝑗 Total utility of trip 𝑖 for agent 𝑗 (utility)
𝜀 Random deviate, representing unobserved determinants of utility

(utility)

Table 6.3: Notation for demand model

The utility function for the discrete choice model is shown in Eq. 6.1. The total

utility of an exclusive ride trip 𝑖 for an agent 𝑗, 𝑉𝑖𝑗, is a linear function of the

destination utility (𝑣𝑖𝑗), the exclusive ride fare price (𝑐𝑖𝑗) and the shortest path travel

time (𝑡𝑖𝑗). Exclusive ride fare price is assumed to be a linear function of travel time
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Notation Definition
𝑥𝑖 Binary trip served indicator where 𝑥𝑖 = 1 if trip 𝑖 is included in

the optimal matching arrangement
𝑦𝑖𝑗 Binary agent-trip assignment indicator where 𝑦𝑖𝑗 = 1 if agent 𝑗 is

assigned to trip 𝑖
𝑧𝑗 Binary unserved agent indicator where 𝑧𝑗 = 1 if agent 𝑗 is unserved
𝑤𝑖𝑘 Binary vehicle-trip assignment indicator where 𝑤𝑖𝑘 = 1 if trip 𝑖 is

served by vehicle 𝑘
𝑞𝑗𝑑 Binary agent-destination indicator where 𝑞𝑗𝑑 = 1 if agent 𝑗 is as-

signed to destination 𝑑
𝑝𝑖 Nominal operator profit associated with trip 𝑖 ($)
𝑝𝑖 Expected operator profit associated with trip 𝑖 ($)
𝜆𝑖𝑘 Cost of assigning vehicle 𝑘 to serve trip 𝑖 ($)
𝑀 Operator penalty for one unserved agent ($)
𝑄𝑖𝑗𝑑 Binary correspondence matrix defining correspondence between an

agent-trip pair (𝑖, 𝑗) and an agent-destination pair (𝑗, 𝑑), where
𝑄𝑖𝑗𝑑 = 1 if trip 𝑖 results in agent 𝑗 traveling to destination 𝑑

𝑏𝑑 Maximum occupant capacity of location 𝑑 (occupants)
𝜇𝑗𝑚𝑑 Binary agent co-location indicator, where if agents 𝜇𝑗𝑚𝑑 = 1 if

agent 𝑗 and agent 𝑚 are assigned to destination 𝑑
𝑢max
𝑗𝑑 Maximum possible profit incurred from assigning agent 𝑗 to desti-

nation 𝑑 ($)
𝐼𝑗𝑚𝑑 Fraction of maximum benefit produced when agents 𝑗,𝑚 ̸= 𝑗 are

assigned to destination 𝑑 (%)
𝑢𝑗𝑑 Total fraction of maximum benefit gained from assigning agent 𝑗

to destination 𝑑 (%)
𝛼𝑗𝑑 Substitution variable representing the realized fraction of addi-

tional profit from assigning passenger 𝑗 to destination 𝑑 (%)
𝑔𝑗𝑑 Binary auxiliary variable used to enforce the conditional relation-

ship between 𝛼𝑗𝑑, 𝑢𝑗𝑑, 𝑞𝑗𝑑

Table 6.4: Notation for supply model

and distance. If the trip 𝑖 is a pooled ride trip, there is also a pooled ride discount 𝑐𝑠𝑖𝑗,

a pooled ride detour time (𝛿𝑖𝑗), and a binary pooled ride indicator (𝜁𝑖) that models

the inconvenience of sharing a vehicle with a stranger. Kang et al. [256] find that the
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inconvenience of sharing is fixed with respect to travel time. Coefficients 𝛽1, 𝛽2, 𝛽3

convert the cost, travel time, and sharing penalty terms into units of utility.

𝑉𝑖𝑗(𝑣𝑖𝑗, 𝑐𝑖𝑗, 𝑐
𝑠
𝑖𝑗, 𝑡𝑖𝑗, 𝛿𝑖𝑗, 𝜁𝑖) = 𝑣𝑖𝑗 −

[︀
𝛽1(𝑐𝑖𝑗 − 𝑐𝑠𝑖𝑗) + 𝛽2(𝑡𝑖𝑗 + 𝛿𝑖𝑗) + 𝛽3𝜁𝑖

]︀
(6.1)

The pricing algorithms used by ride-pooling platforms in practice are not available

to the public, so a deterministic pooled-ride pricing algorithm is assumed. Pooled

rides reduce operating costs by serving several passengers simultaneously, and a

portion of these savings is passed on to customers as a fare discount. For a pooled

ride to present an attractive alternative to an exclusive ride, 𝛽1𝑐𝑠𝑖𝑗 must be greater

than 𝛽2𝛿𝑖𝑗 + 𝛽3𝜁𝑖 for each passenger.

The profit for each trip is determined by taking the sum of the fare paid by all

passengers and subtracting the operating costs, which are linear functions of the

travel time and travel distance. To maximize profit, the operator would like to offer

the minimum discount such that each passenger experiences an increase in utility

over an exclusive ride and retain the remainder of the pooled ride savings as profit.

The operator cannot know each agent’s sensitivity to price, detour, and sharing,

so instead it is assumed that the operator chooses some constant fraction of the

operating cost savings to return as a discount to passengers. The total discount is

then distributed among the passengers according to their relative excess disutility.

As a result, if the total passenger discount is greater than the total excess disutility

of sharing, it is guaranteed that all passengers will experience greater utility from the

pooled ride relative to their exclusive ride option. If the total passenger discount is

less than the total excess disutility of sharing, however, the passengers will experience

greater utility from the exclusive ride.
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The discrete choice model is incorporated by adding a new step in the matching

process. The platform provides the characteristics of one pooled ride trip (fare dis-

count, detour time) to each agent unless no feasible pooled ride trip exists for that

agent. Then, the discrete choice model simulates the choice by each agent between

the pooled ride offered by the platform or an exclusive ride. The agent chooses

whichever ride maximizes their utility. The utility calculated in Eq. (6.1) is used as

an input to determine each agent’s choice between alternative pooled rides and ex-

clusive rides. It is common practice in travel demand modeling to include a random

utility deviate, 𝜀, to capture the unobserved determinants of utility between alterna-

tives. There are many different distributions used for 𝜀; extreme value distributions

are popular for their fit and tractability [125]. The total demand for exclusive and

pooled ride trips, determined from the random utility discrete choice model, is then

used to construct the shareability graph for the optimal matching model described

in the next section.

Matching with flexible destinations

The parameters for each pooled ride can be determined by finding the optimal match-

ing arrangement for a set of ride-pooling requests. The intuition for the matching al-

gorithm is adopted from Alonso-Mora et al. [257], wherein a graph structure is created

to identify possible vehicle-agent combinations, and then an optimization model is

solved to select the optimal set of pooled rides. The procedure is generally tractable,

even for the large vehicle capacities that would be needed for demand-responsive

transit or van pooling, making it an attractive approach for this application. An

entirely new shareability graph structure and generation procedure are developed

to enable efficient matching despite the added complexity of flexible destinations.
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Furthermore, a novel integer programming formulation with destination-specific de-

cision variables is proposed for the optimal matching problem that permits remote

work dependencies such as team co-location requirements. Together, these create a

new passenger-vehicle-destination matching algorithm to evaluate the implications

of remote work policies for shared mobility.

First, the set of shareable rides must be identified. Assume that during some fixed

time interval, a certain number of agents make travel requests. Requests are shareable

so long as constraints on waiting time, detour time, and vehicle passenger capacity

are met. Another restriction is also added: the operating cost of a pooled ride

cannot exceed the total operating cost of serving each agent with an exclusive ride.

This ensures that only pooled rides that produce additional profit for the operator

are considered. Any pooled rides that violate this restriction are not included in

the shareability graph and therefore cannot be chosen by passengers. Additionally,

agents whose trips are not shareable with another agent are served by an exclusive

trip.

In the original algorithm, each request corresponds to a separate agent. Destina-

tion flexibility is modeled by including multiple requests from the same agent with

different destinations. Two requests associated with the same agent are not shareable

with each other. The new shareability graph involves 4 different node types: agents,

requests, trips, and vehicles. The graph representation permits a new constraint to

ensure that only one request per agent is assigned in the optimal solution.

A simple example is shown in Figure 6-1. The circular nodes represent requests

(origin-destination pairs) associated with each agent. Each request node has an in-

degree of 1, meaning that only one agent is associated with each request. In this

case, Agent #2 has flexible destinations, represented by the 3 yellow request nodes

connected to Agent #2. Requests by different agents are combined into possible
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pooled ride “trips” served by a single vehicle. Note that the three requests from

Agent #2 have no trips in common, as it would not be feasible for Agent #2 to be

involved in multiple pooled rides at the same time. Finally, each of the potential

trips can be served by one or more vehicles.

Figure 6-1: Example of the agent-request-trip-vehicle shareability graph

Once the shareability graph is constructed, an integer linear program (ILP) is

solved to find the optimal assignment of agents and vehicles to trips. This assignment

occurs twice: an initial assignment to provide pooled ride trip parameters to the

agents before the actual demand is realized, and a final assignment for the agents

who select pooled rides. The optimal initial assignment is used to find the set of

feasible pooled rides that result in the greatest profit for the operator, which is then

offered to the agents. Note that the operator only offers at most a single pooled ride

to each agent. Depending on the demand, there could be many possible pooled rides

involving each agent, but the agent does not have access to information about any
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pooled rides beyond those offered by the operator. The operator, whose objective

is to maximize their profit, has no incentive to increase the choice set of the agent

by offering multiple pooled rides beyond those that maximize operator profit. For

the final assignment, nodes corresponding to agents that choose an exclusive ride

are pruned from the shareability graph, and the optimal matching arrangement is

redetermined. The overall matching and passenger choice process is illustrated in

Fig. 6-2. The final assignment occurs over a subgraph of the initial shareability

graph and does not add significant computation time.

Step 1: Solve initial
match for full demand
using expected profit

as the objective.

Step 2: Simulate
passenger choice
between exclusive
and pooled ride.

Step 3: Solve final
match for pooled ride
demand with nominal
profit as the objective.

Figure 6-2: Flow chart demonstrating the matching and passenger choice process

The initial matching assignment is based on unrealized demand; ultimately, some

of the pooled rides will not be feasible because the agents involved will choose an

exclusive ride. Therefore, the matching should be weighted towards pooled trips that

are most likely to be chosen by all agents involved. This can be accomplished by

using expected profit in the objective function rather than the nominal profit. The

probability that a pooled ride is chosen by all agents can be estimated in advance for

each trip through simulation of the discrete model described in the previous section.

In the final assignment, the demand is fixed and the nominal profit is used in the

objective function. The two models are otherwise identical.

This process was designed to be similar to the actual ride-hailing customer ex-

perience. The user indicates their travel plans, the platform responds with a set of

prices and travel times, then the user chooses from one of the alternatives. Note that

the process is naïve in that it does not assume any learning of consumer preferences

185



over time. In reality, the platform may take advantage of its users’ responses to

design better recommendation algorithms or pricing strategies.

6.4.2 Location dependency (II)

The model developed in the previous section enables general ride-pooling matching

with destination flexibility. To capture remote work dependencies, additional con-

straints and different objective functions can be formulated. For example, consider

a ride-pooling platform and co-working service that each have a large market share.

All co-working locations are available to the agents, but there are a limited num-

ber of seats at each location. The ride-pooling platform should be aware of facility

capacities and therefore avoid routing numerous passengers to any single location re-

gardless of centrality or travel convenience. The ride-pooling matching ILP described

in Alonso-Mora et al. [257] does not contain any variables related to the destination,

so a new model is created to allow for location dependencies. Additional indices are

defined for the new ILP: 𝑘 ∈ 𝒱 for vehicles, and 𝑑 ∈ 𝒟 for destinations. The set of

vehicles that can be assigned to a trip 𝑖 is ℰ𝑉
𝑖 . Each trip produces a nominal profit

𝑝𝑖 for the operator, while the expected profit is denoted by 𝑝𝑖. The cost of assigning

vehicle 𝑘 to trip 𝑖 due to vehicle relocation is represented by 𝜆𝑖𝑘.

The binary decision variables are chosen to permit constraints and objective terms

dependent on destination choice, which are important for modeling the dynamics of

remote work trips. Let 𝑥𝑖 ∈ {0, 1} indicate whether trip 𝑖 is served, and 𝑦𝑖𝑗 ∈ {0, 1}

indicate whether agent 𝑗 is assigned to trip 𝑖. Let 𝑧𝑗 ∈ {0, 1} indicate whether agent

𝑗 is unserved and 𝑤𝑖𝑘 ∈ {0, 1} indicate whether trip 𝑖 is served by vehicle 𝑘. Finally,

let 𝑞𝑗𝑑 ∈ {0, 1} indicate whether an agent 𝑗 is assigned to a trip with destination 𝑑.

This destination-related decision variable is an important addition to enable associate
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and location dependencies. Since each agent-trip pair (𝑖, 𝑗) corresponds to exactly

one destination, a correspondence matrix Q can be created where 𝑄𝑖𝑗𝑑 = 1 if trip

𝑖 results in an agent 𝑗 visiting a destination 𝑑, and 𝑄𝑖𝑗𝑑 = 0 otherwise. The initial

ILP can then be formulated as follows:

max
𝑞,𝑤,𝑥,𝑦,𝑧

𝑍0 =
∑︁
𝑖∈𝒯

(𝑝𝑖𝑥𝑖 −
∑︁
𝑘∈ℰ𝑉

𝑖

𝜆𝑖𝑘𝑤𝑖𝑘) −𝑀
∑︁
𝑗∈𝒜

𝑧𝑗 (6.2a)

s.t. 𝑥𝑖 ≤ 𝑦𝑖𝑗 ∀(𝑖, 𝑗) ∈ ℰ𝐴𝑇 (6.2b)

𝑄𝑖𝑗𝑑𝑦𝑖𝑗 = 𝑞𝑗𝑑 ∀(𝑖, 𝑗) ∈ ℰ𝐴𝑇 ; 𝑑 ∈ 𝒟 (6.2c)

𝑥𝑖 ≤
∑︁
𝑘∈ℰ𝑉

𝑖

𝑤𝑖𝑘 ∀𝑖 ∈ 𝒯 (6.2d)

∑︁
𝑖∈𝒯

𝑤𝑖𝑘 ≤ 1 ∀𝑘 ∈ 𝒱 (6.2e)

∑︁
𝑖∈𝒯

𝑦𝑖𝑗 − 𝑧𝑗 = 0 ∀𝑗 ∈ 𝒜 (6.2f)

q,w,x,y, z ∈ {0, 1} (6.2g)

Function 6.2a maximizes total expected trip profit less the cost of vehicle as-

signments. A large penalty of 𝑀 is applied for all unserved agents. For the final

matching model, the 𝑝𝑖 term in 6.2a is replaced with 𝑝𝑖. Constraint 6.2b requires

that the agents involved in a pooled trip are assigned to the trip if the trip is served.

Constraint 6.2c defines the relationship between 𝑦𝑖𝑗 and 𝑞𝑗𝑑 such that 𝑞𝑗𝑑 = 1 if

an agent 𝑗 is assigned to a trip where the agent’s destination is 𝑑 (𝑦𝑖𝑗 = 1 and

𝑄𝑖𝑗𝑑 = 1), and 𝑞𝑗𝑑 = 0 otherwise. Constraint 6.2d ensures that each served trip has

an assigned vehicle. Constraint 6.2e requires each vehicle to serve one trip at most.

Constraint 6.2f ensures that each agent is either assigned to one trip or unserved.
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Finally, the location capacity limit is modeled by adding the following constraint

on 𝑞𝑗𝑑, where 𝑏𝑑 is the number of available seats at the location 𝑑:

∑︁
𝑗∈𝒜

𝑞𝑗𝑑 ≤ 𝑏𝑑 ∀𝑑 ∈ 𝒟 (6.3)

6.4.3 Associate dependencies (III)

First, a hard associate dependency is added to the ILP to ensure certain individuals

are assigned to the same location, perhaps team members who require face-to-face

interaction to accomplish a task. The dependency is enforced by adding a constraint

of the following form for two agents 𝑗,𝑚 ̸= 𝑗:

∑︁
𝑑∈𝒟

𝑞𝑗𝑑𝑞𝑚𝑑 = 1 (6.4)

This is a non-linear constraint in the decision variables, however, which makes

the model much harder to solve. The non-linearity can be overcome by introducing

|𝒟||𝒜|2 new binary decision variables, 𝜇𝑗𝑚𝑑 ∈ {0, 1} to represent the non-linear term

𝑞𝑗𝑑𝑞𝑚𝑑. Four linear constraints can be used to model the conditional relationship

between 𝜇𝑗𝑚𝑑 and 𝑞𝑗𝑑𝑞𝑚𝑑, where 𝜇𝑗𝑚𝑑 = 1 if 𝑞𝑗𝑑𝑞𝑚𝑑 = 1 and 0 otherwise:

𝜇𝑗𝑚𝑑 ≤ 𝑞𝑗𝑑 ∀𝑗,𝑚 ̸= 𝑗 ∈ 𝒜, 𝑑 ∈ 𝒟 (6.5a)

𝜇𝑗𝑚𝑑 ≤ 𝑞𝑚𝑑 ∀𝑗,𝑚 ̸= 𝑗 ∈ 𝒜, 𝑑 ∈ 𝒟 (6.5b)

𝜇𝑗𝑚𝑑 ≥ 𝑞𝑗𝑑 + 𝑞𝑚𝑑 − 1 ∀𝑗,𝑚 ̸= 𝑗 ∈ 𝒜, 𝑑 ∈ 𝒟 (6.5c)
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𝜇 ∈ {0, 1} (6.5d)

Similar dependencies can be enforced using this linear formulation, such as a

requirement that each employee works at the same location as at least one team

member. The initial non-linear constraint in Eq. 6.4 is replaced by the following

equation, and the same linearization techniques described above are applied:

∑︁
𝑚∈{𝒜∖𝑗}

∑︁
𝑑∈𝒟

𝑞𝑗𝑑𝑞𝑚𝑑 ≥ 1 ∀𝑗 ∈ 𝒜 (6.6)

The second associate dependency, which is a soft constraint, is introduced by

changing the objective function. The model structure also allows for more complex

objective functions that include remote work considerations. For example, imagine

a version of the scenario described above where two people benefit from face-to-face

interaction, but the interaction is simply preferred instead of required. Since the des-

tination of each passenger is a decision variable in the ride-pooling matching model, it

is not known in advance. Recall that in this scenario, the employer compensates the

ride-pooling platform for the co-location of employees to encourage higher productiv-

ity. This provides an incentive for the ride-pooling platform to choose an otherwise

suboptimal matching arrangement as long as it results in the co-location of certain

employees. For simplicity, assume that each co-located pair of team members results

in a constant payment, regardless of location. This framework can, however, include

payments that vary by employee and location.

There is then some maximum amount of payment that can be obtained by locating

agent 𝑗 at location 𝑑, which occurs when all the team members of agent 𝑗 are also

located at 𝑑. This maximum payment is represented by a constant, 𝑢max
𝑗𝑑 . A matrix
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𝐼 of size |𝒜|× |𝒜|× |𝒟| is defined, where 𝐼𝑗𝑚𝑑 ∈ [0, 1] is the fraction of 𝑢max
𝑗𝑑 obtained

when the agent 𝑚 is co-located with the agent 𝑗 at a destination 𝑑. In this simple

case, 𝐼𝑗𝑚𝑑 is equal to 1 over the size of the team, therefore
∑︀

𝑚 𝐼𝑗𝑚𝑑 = 1.

There are two conditions required for the payment to be realized. First, the team

members must be co-located with the agent 𝑗. The auxiliary variable 𝑢𝑗𝑑 ∈ [0, 1], is

introduced to represent the fraction of 𝑢max
𝑗𝑑 that could be accrued when the agent 𝑗

visits a location 𝑑, given that some of the team members may not be co-located at 𝑑

(i.e. 𝑢𝑗𝑑 =
∑︀

𝑚∈{𝒜∖𝑗} 𝐼𝑗𝑚𝑑𝑞𝑚𝑑). Second, the agent 𝑗 must be assigned to a destination

𝑑, which occurs when 𝑞𝑗𝑑 = 1. Multiplying decision variables 𝑢𝑗𝑑 and 𝑞𝑗𝑑 produces a

non-linear term in the objective function, however. This binary-continuous product

can be linearized through substitution. First, let 𝛼𝑗𝑑 ∈ [0, 1] represent 𝑢𝑗𝑑𝑞𝑗𝑑. An

auxiliary variable 𝑔𝑗𝑑 and constraints (6.8a) - (6.8f) are introduced to enforce 𝛼𝑗𝑑 =

𝑢𝑗𝑑 when 𝑞𝑗𝑑 = 1 and 𝛼𝑗𝑑 = 0 otherwise. The objective function in Eq.(6.2a) is

replaced by a new objective function:

max
𝑞,𝑤,𝑥,𝑦,𝑧,𝑢,𝛼,𝑔

𝑍1 =
∑︁
𝑖∈𝒯

(𝑝𝑖𝑥𝑖 −
∑︁
𝑘∈ℰ𝑉

𝑖

𝜆𝑖𝑘𝑤𝑖𝑘) −𝑀
∑︁
𝑗∈𝒜

𝑧𝑗 +
∑︁
𝑗∈𝒜

∑︁
𝑑∈𝒟

𝑢max
𝑗𝑑 𝛼𝑗𝑑 (6.7)

The linear constraints are as follows:

𝑢𝑗𝑑 =
∑︁

𝑚∈{𝒜∖𝑗}

𝐼𝑗𝑚𝑑𝑞𝑚𝑑 ∀𝑗 ∈ 𝒜, 𝑑 ∈ 𝒟 (6.8a)

− 𝑔𝑗𝑑 ≤ 𝑞𝑗𝑑 ≤ 𝑔𝑗𝑑 ∀𝑗 ∈ 𝒜, 𝑑 ∈ 𝒟 (6.8b)

1 − (1 − 𝑔𝑗𝑑) ≤ 𝑞𝑗𝑑 ≤ 1 + (1 − 𝑔𝑗𝑑) ∀𝑗 ∈ 𝒜, 𝑑 ∈ 𝒟 (6.8c)

− 𝑔𝑗𝑑 ≤ 𝛼𝑗𝑑 ≤ 𝑔𝑗𝑑 ∀𝑗 ∈ 𝒜, 𝑑 ∈ 𝒟 (6.8d)
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− (1 − 𝑔𝑗𝑑) ≤ (𝛼𝑗𝑑 − 𝑢𝑗𝑑) ≤ (1 − 𝑔𝑗𝑑) ∀𝑗 ∈ 𝒜, 𝑑 ∈ 𝒟 (6.8e)

g ∈ {0, 1} 𝛼 ∈ [0, 1], u ∈ [0, 1] (6.8f)

A total of 3|𝒟||𝒜| new decision variables, some continuous, are introduced to cre-

ate a tractable mixed-integer program with a linear objective and linear constraints.

This enables the ride-pooling matching problem to be solved efficiently for the co-

working scenario. The objective is defined in Eq. (6.7), subject to constraints (6.2b)

- (6.2f), (6.3) and (6.8a) - (6.8f).

6.5 Case Study

6.5.1 Experiment design

To demonstrate how the methods described in the previous section can be used to

design ride-pooling services for remote work, an experiment was developed using real

ride-hailing demand data from Manhattan. Exact origins, destinations, and pick-up

times for each trip in June 2016 were collected from a public dataset provided by the

New York City Taxi and Limousine Commission [258]. Time-dependent travel speeds

for each street in Manhattan were used to determine travel times between pickup and

drop-off locations [259]. Ride-pooling requests were grouped into 3-minute intervals

during the morning rush hour (8 AM - 9 AM), a time period during which the vast

majority of travelers are traveling to work. The interval starting at 8:00 AM was

used for this experiment, which contained 840 requests. The vehicle fleet size was

therefore chosen to be sufficient to satisfy the demand; initial vehicle locations were

assigned uniformly at random from the set of street intersections. The values for all

simulation parameters are presented in Table 6.5.
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Parameter Value
Cost coefficient mean (𝛽1) 1.59 [255]
Time coefficient (𝛽2) 0.318 [255]
Sharing coefficient (𝛽3) 0.693 [255]
Maximum wait time 10 minutes
Maximum detour time 25% of shortest path travel time
Fleet size 900 vehicles
Vehicle capacity 4 passengers
Base fare $2.65 [260]
Additional fare per mile $1.005 / mile [260]
Additional fare per minute $0.1125 / minute [260]
Exclusive ride profit margin 25% [260]
Pooled ride discount fraction 50% of operating cost savings
Total number of agents 840 agents
Agents with flexible destinations 168 agents (20% of total)
Available co-working locations 10 Manhattan WeWork locations
Optimality gap cut-off 0.5%

Table 6.5: Simulation Parameters

Values for 𝛽1, 𝛽2, and 𝛽3 were adopted from the ride-pooling discrete choice model

estimated by Alonso-González et al. [255]. The maximum pickup time was set to 10

minutes and the maximum detour was set to 25% of the shortest path travel time.

Operating parameters for ride-pooling platforms are taken from a 2019 study of Uber

and Lyft in Denver, CO [260]. Ten evenly spaced WeWork spaces in Manhattan are

used as the representative remote work locations [261]. The destination utilities 𝑣𝑖𝑗

are unknown in practice, so a distribution is assumed. For each agent, the utility

is sampled independently from a mixed distribution for each location such that the

agents have similar but not identical utility for each destination. The mixed distri-

bution is a normal distribution where the mean is drawn uniformly at random from

the range (50, 60) for each destination, with a standard deviation of 3 units.

Three scenarios are tested against a baseline scenario. The first demonstrates how
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remote work locations affect ride-pooling outcomes compared to a baseline where

all locations are fixed. In the typical remote work scenario, 20% of passengers are

assumed to have flexible destinations. Values from 5% to 30% are tested for Scenario

1. Passengers with flexible destinations are chosen at random, as no employment or

demographic information is provided about the passengers in the NYCTLC dataset.

These passengers choose between trips to each of the 10 selected WeWork locations.

Because the destinations were changed to WeWork locations for Scenario 1, the

locations are also changed in the baseline scenario to ensure that only the effect of

passengers with multiple flexible destinations influences the results. To that end,

all passengers with a flexible destination in Scenario 1 are assigned to the WeWork

location with the least travel cost in the baseline scenario. The sensitivity of the

results to the quantity and layout of these locations are also tested in Scenario 1 by

re-running the experiment with 5 and 15 WeWork locations.

Scenario 2 adds different location capacity constraints from Eq. (6.3) to explore

the impact of co-working space size on ride-pooling outcomes. Finally, the third

scenario incorporates the associate constraints and dependencies described in Sec-

tion 6.3 to contrast the results of the associate dependency benefits from Eqs. (6.6)

- (6.8) with the results from the two previous scenarios. Each scenario is evalu-

ated based on operator profit, pooled ride mode share, total vehicle-miles traveled

(VMT), total agent utility, and solution time. The reported results are the average of

10 model runs as the demand model includes a stochastic discrete choice component,

although the results do not vary significantly across simulation runs (the coefficients

of variation are less than 3%).
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6.5.2 Results

Table 6.6 compares the ride-pooling outcomes for different levels of passenger flexi-

bility against equivalent baseline scenarios with no flexible destinations. Percentage

changes in performance relative to the corresponding baseline scenario are reported.

The results demonstrate that flexible destinations allow the ride-pooling platform

to match travelers more efficiently, leading to a greater share of pooled rides, lower

VMT, and more operator profit. Moreover, performance increases with respect to

VMT, profit, and the number of pooled trips grow rapidly with the share of flex-

ible passengers. The average utility for passengers is unchanged across scenarios,

indicating that the discount for the additional pooled trips is sufficient to offset the

disutility of sharing. The maximum ILP solution time for all experiments was 11.3

seconds using Gurobi v9.1 on a dual-core Intel i7-6600U CPU with 16 GB of RAM.

The reduction in VMT observed in the flexible destination scenario is entirely due

to matching efficiency. Flexible destinations led to slightly longer trips being selected

on average: the total passenger miles traveled (PMT) increases in the flexible scenario

relative to the baseline scenario, indicating that the reduction in VMT is purely a

consequence of the greater number of pooled trips. In brief, flexible destinations

result in each vehicle mile serving more passenger miles.

Evaluation Parameter Share of passengers with flexible destinations
5% 10% 15% 20% 25%

Number of Pooled Trips +1.3% +1.8% +2.7% +4.1% +6.3%
Operator Profit +0.6% +1.6% +3.2% +5.3% +8.4%
Passenger Utility +0.1% +0.1% +0.0% +0.0% +0.2%
Total VMT -0.4% -0.8% -1.8% -3.2% -4.9%
PMT / VMT +0.8% +0.8% +1.9% +5.3% +5.4%

Table 6.6: Ride-pooling platform performance with flexible destinations relative to
the non-flexible scenario by share of flexible passengers
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These results are encouraging; even with a low share of flexible travelers, out-

comes are improved for all stakeholders. Unsurprisingly, the benefit of passengers

having flexible destinations yields the greatest benefits for the operator (profit) and

the system (VMT and pooled trips), rather than the passengers themselves, given

that the objective of the ILP is to maximize operator profit. The increases in pas-

senger utility appear to be largely incidental and are not affected by the share of

passengers with flexible destinations. The efficient matching afforded by destination

flexibility has positive externalities, namely reduced travel due to a higher pooling

rate. It is perfectly reasonable to assume that the objective of the platform is to

maximize profit, but other objective functions, perhaps achieved through regulation

or a different incentive structure, could distribute the benefits differently.

The sensitivity of the results with respect to the number and spatial distribution

of possible destinations provides insights into the impact of land use and available

flexible workplaces on travel demand. The baseline scenario used to generate the

results presented in Table 6.6 assumes there are 10 flexible workplaces available,

with the locations corresponding to actual WeWork spaces in Manhattan. The sim-

ulation was also run for scenarios with 5 and 20 destinations, also selected from

WeWork offices. The spatial distribution of the locations is presented in Figure 6-3a

below. The number of visits by location for the 20-destination scenario is presented

in Figure 6-3b.

Table 6.7 shows how the performance of the ride-pooling platform changes with

respect to the number of destinations available to flexible travelers. Once again,

the percentage improvement relative to the non-flexible baseline for each scenario

is reported. Clearly, a greater number of flexible destinations available to flexible

passengers creates more opportunities for efficient matching by expanding the share-

ability graph, leading to better performance and reduced externalities. Interestingly,
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(a) Selected WeWork Locations
(b) Number of visits (20 flexible destina-
tions)

Figure 6-3: Spatial distribution of flexible work locations and visits

PMT declines when 20 destinations are available relative to the 10-destination sce-

nario because passengers are more likely to find an available destination nearby. As

a result, the reduction in VMT is not a result of increased efficiency, but simply a

result of shorter overall trip distances.

Scenario 2 adds location capacity constraints to the problem to model the ride-

pooling problem for a co-working location or an employer with several small offices

in an urban area. In the unconstrained problem, the most popular destination was

visited by 50 agents. Figure 6-4 presents the trends for traveler utility and VMT as

several increasingly restrictive occupant capacities are applied. The effects are limited

for maximum capacity constraints above 35 people per location as only a few trips to

196



Evaluation Parameter Number of available destinations
5 10 20

Number of Pooled Trips +0.5% +4.1% +6.7%
Operator Profit +3.1% +5.3% +6.2%
Passenger Utility +0.0% +0.0% +0.0%
Total VMT -2.3% -3.2% -4.0%
PMT / VMT +0.5% +2.0% +1.2%

Table 6.7: Ride-pooling platform performance with flexible destinations relative to
the non-flexible scenario by number of available destinations for flexible passengers

the most popular locations are affected. As the maximum capacities grow smaller,

however, traveler welfare (as measured by utility) and system outcomes (VMT) begin

to decline quickly. The most restrictive location capacity constraints decrease total

traveler utility by 9.0% while increasing VMT by 6.6%, as the constraints force many

remote workers to travel to less preferred and more distant locations. These impacts

fall entirely on the remote workers, as they are the only travelers who can change

their destinations in response to capacity constraints. The average travel distance

for remote workers is 1.96 miles in the unconstrained scenario and 2.30 miles in the

most constrained scenario.

These results imply that, in a remote work environment, workplaces that are

easily accessible by remote workers will experience greater demand on a day-to-

day basis. If demand begins to exceed the number of available workplaces at these

centrally located remote work hubs, overall congestion will increase as remote workers

must travel further to find an available space. Policymakers interested in travel

demand management may consider tracking occupancy rates of remote workspaces

in their regions and removing regulatory barriers to expansion where demand exceeds

supply.

Finally, Scenario 3 adds associate dependencies to the objective function as given

197



Figure 6-4: Sensitivity of total traveler utility and VMT to changes in location
capacity

by Eqs. (6.6) - (6.8) while removing the location capacity constraint. The first is

a hard constraint, requiring each flexible traveler to be co-located with a certain

number of their colleagues. Figure 6-5 shows how co-locating two employees hardly

affects the travel outcomes, but co-locating three or more colleagues results in a major

degradation in performance. In fact, the co-location of three or more employees com-

pletely offsets the VMT reduction benefits of flexible destinations, leading to more

total VMT than the baseline scenario with no flexible destinations. The co-location

constraint forces flexible workers to destinations that are significantly suboptimal

from a transportation efficiency perspective, limiting the amount of matching that

occurs and driving up VMT. Traveler utility decreases as longer and more expensive

trips are required to less desirable destinations in order to satisfy the co-location

constraint.

The second associate dependency is a soft dependency, where team members are

incentivized (but not required) to co-locate with one another. Travelers with flexible
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Figure 6-5: Sensitivity of total traveler utility and VMT to changes in the number
of colleagues that must be co-located

destinations were divided at random into teams of constant size. Co-locating two

team members results in a bonus payment of 𝑢max to the operator. The maximum

solution time for these experiments was 10.3 seconds. Figure 6-6 shows how the

number of co-located team members increases with 𝑢max for various team sizes. Even

small values of 𝑢max can increase the number of team members working at the same

location. For 15-person teams, the number of employees working with another team

member increases from an initial 44 to 53 when 𝑢max = 2.5$.

Figure 6-7 presents profit and VMT for increasing values of 𝑢max when the team

size is fixed to 15 people. Like in Figure 6-6, the effect of the co-location bonus

plateaus after $2.50 for teams of 15 people; VMT and profit (without co-location

bonus) are largely unchanged as the bonus grows from $2.50 to $5.00. There is an

empirical upper bound for the number of co-located employees, as travel costs make

it very unlikely for certain team members to travel to the same destination. While

the total profits increase due to the addition of 𝑢max, the profits earned directly
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Figure 6-6: Sensitivity of the number of co-located employees to changes in the
associate benefit 𝑢max for a range of team sizes

from passengers (profit without bonus) decrease when the incentive for co-location

outweighs the incentive to operate the most profitable trips. Similar to the trends

observed in Figure 6-4 where the location capacity constraint is applied, there is also

a rise in VMT when co-location is heavily incentivized due to the additional travel

required.

6.6 Policy implications

The experimental results show that, given the conditions described in Section 6.5.1,

remote work policies can improve ride-pooling adoption rates and profits while re-

ducing VMT. While the performance increases from destination flexibility may seem

somewhat low, note that the experiment covers only people who live and work in a

very small geographic area (Manhattan). Flexible ride-pooling platforms serving an

entire urban region with medium and long-distance commutes could have an even
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Figure 6-7: Sensitivity of total profit, profit without benefit and VMT to changes
in the associate benefit 𝑢max

larger impact. Location capacity constraints, co-location constraints, and co-location

incentives are found to temper the travel benefits of flexible destinations by requir-

ing or encouraging travel to suboptimal locations. This research has implications

for three different remote work stakeholders: employers, policymakers, and mobility

services.

Employers considering remote work policies can use the tools presented in this

study to evaluate different remote work policies and real estate portfolios. There is

an ongoing tension between employers who prefer for their staff to have face-to-face

interactions and remote workers who would prefer to avoid the costs of traveling to

the workplace. This study shows that allowing more employees to work from mul-

tiple locations (e.g. co-working spaces) reduces VMT and improves traveler utility,

even if co-location of team members is desired. Having a large portfolio of possible

work locations spread across an urban region is also helpful in limiting travel costs

for employees and avoiding transportation-related externalities. Ensuring that the
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most easily accessed locations have sufficient capacity will allow employees to take

advantage of nearby flexible work locations.

Given that flexible work locations have the potential to reduce VMT through

increased ride-pooling, policymakers should consider how to encourage mobility op-

erators to offer these features. Furthermore, flexible work location policies could be

considered as part of a larger travel demand management program. Land use policies

that allow for new collaborative workplaces in residential areas may also reduce the

distance that remote workers need to travel when they choose to do remote work

outside the home.

These results demonstrate that ride-pooling platforms could leverage the tools

described herein to provide more efficient matching and greater adoption of pooled

rides by allowing customers to enter multiple possible destinations for the same trip.

Furthermore, future ride-pooling platforms could allow two friends or colleagues leav-

ing from different origins to choose a central location for a meeting or social event

based on some mutual combination of travel costs and destination preferences. Such

features would extend existing ride-pooling platforms to more of a comprehensive

trip-planning platform. Some have predicted that shared autonomous vehicles may

eventually gain a substantial market share [262]; in such an environment, the effi-

ciency gains from flexible destination ride-pooling could have a significant impact on

overall travel demand. Platform operators could also create new business models by

partnering with employers and co-working spaces to provide integrated mobility and

workplace solutions for the future of work.
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6.7 Conclusions

This chapter establishes a vocabulary and framework for modeling travel demand

and supply optimization in the context of remote work. The framework is used to

study the impacts of flexible remote work locations on ride-pooling outcomes. A new

ride-pooling matching model is proposed with linear formulations that capture the

dynamics of work location choice for the first time, including location capacities and

the benefits of co-locating with colleagues. These formulations are tested using real

demand, demonstrating the impacts of remote work dependencies and the tractability

of the model formulations. While the model is applied to shared ride-pooling in this

chapter, the methods can be easily modified for passenger-vehicle matching with

other shared mobility modes such as demand-responsive transit by changing the

vehicle passenger capacity and removing any exclusive rides from the set of possible

trips.

This work extrapolates from current trends to provide high-level insights for a

possible future. Real data was used wherever possible, but several assumptions

were necessary to model travel behaviors and employment scenarios in the context

of remote work. Surveys are needed to quantify travel preferences and employer

plans regarding flexible work locations to improve the destination utility assumptions.

Another limitation of the case study is that it compares a ride-pooling service with

some flexible destinations against a ride-pooling service with no flexible destinations

for a single period of operations that assumes a fixed number of customers and

drivers. Given that flexible destinations are shown to improve operational efficiency,

operational profitability, and utility for customers, more drivers and passengers may

be attracted to the platform over time [263]. Future research in this area could extend

the modeling framework to a day-to-day simulation of ride-pooling operations with

203



flexible destinations.

Other potential extensions of this research include developing multi-objective

models to design remote work policies that balance travel utility and productivity.

This could include a more sophisticated, graph theory-based approach to productivity

modeling, where productivity is related to the presence of co-workers and random

interactions between different organizations. Such interactions do not need to be

random or exclusive to the workplace; future research could also include the design

of a ride-pooling algorithm that matches agents strategically to promote idea flow.
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Chapter 7

Tractable optimization models for

evaluating transit capacity flexibility

at the network scale

7.1 Introduction

The concept of “capacity flexibility” was proposed by Morlok and Chang [264] as a

framework for evaluating the ability of a transportation system to handle changes

in the distribution of demand. In their seminal paper, the authors develop a model

for measuring the capacity of freight networks. Chen and Kasikitwiwat [265] subse-

quently proposed a different model for the capacity flexibility of a road network for

passenger transportation. They define three different metrics for capacity flexibility:

1. Reserve capacity: the largest multiplier that can be applied to the exist-

ing origin-destination demand matrix without violating any link capacities or

exceeding a specified level of service.
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2. Network capacity with limited flexibility: the summation of the current

origin-destination demand and additional demand that the network can accom-

modate. The current demand pattern is preserved, but the additional demand

has the flexibility to choose any destination.

3. Network capacity with total flexibility: the maximum number of passen-

gers that the system can accommodate when all travelers in the network can

choose their destination.

Freight networks and road networks both present a relatively simple application

of capacity flexibility. A freight network operator has total control of the path of each

unit of demand. Road networks, on the other hand, have nominal link capacities that

cannot be adjusted on a day-to-day basis by adding or removing lanes. Models of

road network capacity flexibility must account for driver autonomy in route choice,

but there is no need to consider the adjustment of supply to match demand patterns

(at least in the short term). The inflexible nature of road networks also limits the

practical benefits of determining capacity flexibility; identifying potential capacity

constraints in a network provides limited value if ameliorating those constraints is

extremely costly and time-consuming.

Public transit networks present a challenging case from a methodological per-

spective because they feature the complexities of both freight networks and road

networks. Passengers are free to choose any route to their destination, making the

demand more flexible than a freight network. Furthermore, the transit operator can

adjust the frequencies of each transit line to accommodate more demand. In brief,

demand and supply respond to one another, creating a dynamic transportation sys-

tem that can be rather difficult to model. However, these same features that create

complexity also make public transit networks a much more compelling application
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for capacity flexibility. Identifying whether resource constraints, minimum service

requirements, or infrastructure limitations are preventing greater capacity can help

a transit agency in short-term scheduling and long-term strategic planning.

Capacity flexibility for public transit networks is also especially relevant at the

current moment. Public transit systems have seen a significant decline in ridership

throughout the COVID-19 pandemic and recovery period. Transit agencies are con-

cerned that ridership may not return to pre-pandemic levels in the short or medium

term, primarily as a result of the dramatic increase in remote work. Commuters had

historically made up a significant portion of the ridership base for transit agencies in

urban areas. People are still choosing to travel, however, but at different times and

to different locations than before. How transit networks might accommodate more

travel within residential neighborhoods, or during off-peak periods, remains an open

question for many transit agencies. These shifts represent changes in the spatial

and temporal distribution of demand, and evaluating the capacity of the network to

handle such changes is exactly the purpose of capacity flexibility models.

There have been two previous attempts to develop models for the capacity flexi-

bility of public transit networks. The first, by Hang et al. [266], proposes a model for

the reserve capacity of transit networks. Their model is highly non-linear, and the

authors present a genetic algorithm-based heuristic solution method. The second,

a recent paper by Zheng et al. [267], includes transit as one of three transportation

modes in a multi-modal network capacity flexibility model. The authors propose a

bi-level optimization problem and sensitivity-based solution algorithm that converges

to a locally optimal solution.

These two papers have several limitations in common. First, the passenger assign-

ment components are relatively simple and do not consider the disutility of crowding

or the non-linear wait time functions that occur when passengers are denied boarding
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on an overcrowded bus or train. The second and perhaps most important limitation

is that these models are only shown to be tractable for toy-sized problems with less

than 10 nodes each. This prevents them from being used in practice to evaluate the

capacity flexibility of actual transit networks and develop policy recommendations.

In this chapter, a new mixed-integer non-linear programming formulation for each

of the three transit capacity flexibility metrics is proposed. The model formulations

provide a more accurate representation of transit dynamics than the previous lit-

erature by including the disutility of crowded trains and the non-linear effects of

crowding on wait time. Then, a new iterative solution method is presented based on

a first-order approximation of the passenger choice function and a fixed demand mul-

tiplier that solves a mixed-integer linear program at every iteration. An experiment

using the full Massachusetts Bay Transportation Authority (MBTA) rapid transit

network demonstrates how the novel model design and solution algorithm can be

used to measure the capacity flexibility of a full-sized transit network for the first

time in the literature. This problem-specific iterative solution method is shown to

outperform the solution methods from previous transit capacity flexibility literature,

as well as a state-of-the-art commercial solver.

7.2 Network capacity theory and literature

Network capacity is an important concept in transportation planning, yet the term

“capacity” can refer to a wide variety of different metrics depending on the context.

The canonical maximum network flow problem with fixed link capacities is a simple

example; there exists some deterministic optimal solution that provides an upper

limit on throughput. As noted by Kasikitwiwat and Chen [268], the maximum flow

of passenger transportation networks must consider many other factors, including
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passenger choice. Unlike in freight networks, passengers are empowered to choose a

route and even a destination for some trips, making it unlikely that the theoretical

maximum capacity of the network could ever be achieved. Traffic network capacity

is therefore often described with two parameters: the system optimal traffic flow, a

theoretical passenger throughput that could be achieved under centralized routing,

and the user equilibrium traffic flow that occurs when passengers choose routes ac-

cording to their own self-interest [269]. The practical capacity of a network is thus

dependent on the interaction between the demand pattern and the network, not

simply the structure of the network itself [270].

As an example, consider a public transit network in an urban area. Adding a

new transit line to a sparsely populated region provides little practical capacity, as

there would be little demand for the new line, even if it provides a relatively large

increase in the theoretical capacity of the network. On the other hand, if land-use

policies are such that the new line includes the development of relatively dense,

transit-oriented neighborhoods at each station, both the practical and theoretical

capacity of the network would be improved. While in both scenarios, the network

changes are the same, it is the demand profile that ultimately determines the impact

on practical capacity. Similarly, offering differential fare pricing for peak and off-peak

periods could increase the total daily capacity of a transit network without making

any changes to the network structure [271].

Other important considerations in passenger network capacity measurement in-

clude congestion-related delays, rather than fixed travel times, and lower bounds

on the level of service. Congestion-related delay creates a network in which travel

times can grow to the point where most users would consider the network to be

over-saturated, even if it has yet to reach the maximum theoretical capacity [272].

Second-best constraints [273] can therefore be added to enforce bounds on the level of
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service and other sociopolitical factors that limit the practical capacity of a network,

even if it is not physically limited. In addition to the considerations mentioned by

Kasikitwiwat and Chen [268], some transportation networks, such as public transit

networks, can reallocate capacity between links in a relatively short timeframe, thus

creating a dynamic problem that might have many optimal solutions.

Capacity flexibility can be designed to capture the complexity described above

and provide both practical and theoretical perspectives on network capacity. It of-

fers an evaluation of the practical maximum capacity of a network given a user

equilibrium demand pattern, but also the theoretical capacity of the network un-

der an entirely flexible demand profile. In this chapter, the practical component

of transit capacity flexibility is highlighted through three metrics. The first transit

capacity flexibility metric, “Reserve Capacity” (RC) assumes that the current origin-

destination patterns are preserved, and only the magnitude of the demand can be

adjusted. “Total Destination Flexibility” (PF) assumes that the trip origin patterns

remain the same, but destinations for all passengers are flexible. Total Destination

Flexibility is a slight departure from the Total Flexibility metric in Chen and Kasik-

itwiwat [265], where both origins and destinations are allowed to be flexible. Allowing

origins to be flexible produces interesting theoretical results, but few practical impli-

cations, since it results in many trips along low-demand parts of the network which

are unlikely to provide value to passengers. “Partial Destination Flexibility” (PF)

is between Total Destination Flexibility and Reserve Capacity, wherein the existing

demand patterns remain constant but all new demand has the flexibility to choose

a destination. A baseline metric is also calculated for comparison. It is known as

“Existing Capacity” (EC), which is similar to the Reserve Capacity metric except

that the line frequencies are held constant, and cannot be changed by the network

operator to match observed demand patterns.
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There has been considerable research interest in capacity flexibility since the

concept was introduced for freight networks by Morlok and Chang [264] and traffic

networks by Chen and Kasikitwiwat [265]. Network capacity flexibility has frequently

been used in the evaluation of freight networks to illustrate the importance of flexi-

bility in supply chains and propose improvements [274, 275, 276]. Designing supply

chains for capacity flexibility is considered to be a proactive measure to mitigate the

effects of demand uncertainty [277]. Capacity flexibility is also used for assessing

the theoretical capacity and resiliency of networks that are subject to disruptions

[278, 279].

Research on passenger transport has largely focused on enhancing models of traf-

fic networks. Wang et al. [280] develops a model for determining the reserve capacity

model of a road network under stochastic user equilibrium conditions, rather than

deterministic user equilibrium. Using a robust optimization approach, [281] develop

a model of capacity flexibility for road networks that is robust to errors or inaccu-

racies in the demand measurements. Zheng et al. [267], describing network capacity

flexibility as an urgent priority for transportation planners, designs a multi-modal

subsidy scheme in which the goal is to maximize capacity flexibility, using the same

measures as Chen and Kasikitwiwat [265]. In an interesting application, [282] ex-

tends the concept of capacity flexibility to the capacity of a single transit station to

handle changes in demand patterns using a queuing model.

7.3 Model design

The primary inspiration for the model in this chapter is the transit frequency set-

ting model developed by Bertsimas et al. [283]. Their model solves the frequency-

setting and pricing problem for transit networks, and was shown to be tractable for
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a medium-sized network. An entirely new model is required for the transit capacity

flexibility problem. The two key differences between the three transit capacity flexi-

bility problems and the frequency-setting problem are the objective function and the

passenger choice function. First, the objective of the reserve capacity problem is to

maximize total passenger throughput; therefore, the total passenger demand must be

treated as a modeling decision variable rather than an exogenous constant. This in-

troduces a new source of non-linearity into the model due to the multiplication of two

decision variables: the demand multiplication factor (which is being maximized) and

the demand at each origin-destination pair. Second, the limited and total flexibility

problems allow for variable passenger destinations. The passenger choice function

therefore has a new dimension, destination choice, and must consider all possible

destination-route pairs, rather than route choices alone. As a result, the number of

alternatives in the passenger choice function expands dramatically. Moreover, the

destination choice model must be calibrated to replicate existing demand patterns.

Both of these differences make the transit capacity flexibility problem much more

complex to solve than the transit frequency setting problem.

To overcome the complexity challenge and solve the model to near optimality in

a reasonable computation time, three significant contributions are introduced. First,

a new mixed-integer non-linear programming model for evaluating the three transit

capacity flexibility measures is developed. Then, a new problem-specific iterative

solution algorithm that outperforms both previous transit capacity flexibility solution

methods and commercial solvers is proposed. Finally, a technique for calibrating the

destination choice model to reproduce observed origin-destination demand so that

this model can be used by practitioners to evaluate real transit networks is presented.

The basic modeling environment is as follows. There are a set of 𝑁 stations

served by transit lines indexed by 𝑙 ∈ 1, ..., 𝐿. The set of stops served by the line
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𝑙 is denoted by stops(𝑙). There are also a fixed number of time periods indexed by

𝑡 ∈ 1, ...𝑇 . The variable representing the arrival frequency for trains that arrive in

period 𝑡 on line 𝑙 is denoted by 𝑥𝑙𝑡 ∈ R+. There is a minimum frequency for each

line to ensure some lower bound on service quality, 𝑥𝑙,𝑚𝑖𝑛, and a maximum frequency

for each line based on the physical constraints of the system, 𝑥𝑙,𝑚𝑎𝑥. The passenger

capacity of each train is represented by 𝐾 𝑙, and the total resource budget is 𝐵. The

resources used in dispatching each train on line 𝑙 are represented by 𝑐𝑙.

The set of routes from origin station 𝑢 to destination station 𝑣 is denoted by

routes(𝑢, 𝑣) and indexed by 𝑟. The integer variable 𝑧𝑢,𝑣,𝑟,𝑖𝑡 then represents the number

of passengers that travel from origin 𝑢 to destination 𝑣 on route 𝑟 aboard a train

that departs during the time period 𝑡.

Each route can have several legs (representing transfers between lines), denoted

by legs(𝑢, 𝑣, 𝑟). There is also the set of continuous variables 𝜃𝑢,𝑣,𝑟𝑡 (x) ∈ [0, 1], that

represent the share of passengers traveling from origin 𝑢 to destination 𝑣 that choose

route 𝑟. Route choice is a function of x because passengers’ choices will depend on

the frequencies of each route, which affects their expected wait time. By definition,∑︀
𝑟 𝜃

𝑢,𝑣,𝑟
𝑡 (x) = 1 for all 𝑢, 𝑣, 𝑡. Similarly, 𝜃𝑢,𝑣,𝑟𝑡 (x) is used to represent the share

of passengers traveling from origin 𝑢 at time 𝑡 that choose both destination 𝑣 and

route 𝑟, which is used for the passengers with flexible destinations. In this case,∑︀
𝑟

∑︀
𝑣 𝜃

𝑢,𝑣,𝑟
𝑡 (x) = 1 for all 𝑢, 𝑡. Finally, the demand multiplier that is maximized is

denoted by Γ ∈ R+.

Then, the basic model for reserve capacity can be written as:

𝑍reserve = max
𝑥,𝑧,Γ

Γ (7.1)
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s.t.
𝑇∑︁
𝑡=1

𝐿∑︁
𝑙=1

𝑐𝑙𝑥𝑙𝑡 ≤ 𝐵 (7.2)

𝑥𝑙,𝑚𝑖𝑛 ≤ 𝑥𝑙𝑡 ≤ 𝑥𝑙,𝑚𝑎𝑥 ∀𝑙 = 1, ..., 𝐿; (7.3)

∀𝑡 = 1, ..., 𝑇

𝑡∑︁
𝑡′=1

𝑧𝑢,𝑣,𝑟,1𝑡′ ≥ Γ
𝑡∑︁

𝑡′=1

𝑑𝑢,𝑣𝑡′ 𝜃
𝑢,𝑣,𝑟
𝑡′ (x) ∀𝑢 = 1, ..., 𝑁 ; (7.4)

∀𝑣 ∈ dests(𝑢);

∀𝑟 ∈ routes(𝑢, 𝑣);

∀𝑡 = 1, ..., 𝑇

𝑡∑︁
𝑡′=1

𝑧𝑢,𝑣,𝑟,𝑖𝑡′ ≤
𝑡∑︁

𝑡′=1

𝑧𝑢,𝑣,𝑟,𝑖−1
𝑡′ ∀𝑟 ∈ routes(𝑢, 𝑣); (7.5)

∀𝑖 = 2, ..., |legs(𝑢, 𝑣, 𝑟)|;

∀𝑡 = 1, ..., 𝑇∑︁
(𝑤,𝑣,𝑟,𝑖)∈passthru(𝑙,𝑢)

𝑧𝑤,𝑣,𝑟,𝑖
𝑡 ≤ 𝐾 𝑙𝑥𝑙𝑡 ∀𝑙 = 1, ..., 𝐿; (7.6)

∀𝑢 = stops(𝑙);

∀𝑡 = 1, ..., 𝑇

z ∈ Z+; x,Γ ∈ R+ (7.7)

The objective, per the definition of reserve capacity, is to maximize the demand

multiplier Γ. Constraint (2) enforces the resource budget. This budget constraint

can represent financial resources, or simply the number of trains available. Note that

this aggregate constraint assumes that trains are fungible across lines, which is not

true for all transit systems. To split the budget constraint by groups of lines that

share train cars, Constraint (2) can be replaced with an individual budget constraint
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for each group, with a trivial effect on overall computational complexity.

Constraint (3) enforces the minimum and maximum frequencies for each line.

The maximum capacity is a physical restriction; above a certain threshold, the trains

simply cannot operate any closer together. Minimum capacity is a social concept,

similar to the second-best constraints described by Liu et al. [273]. It is certainly

possible to operate a transit line at very low frequencies, but for social and political

reasons, it is often desirable to enforce a minimum frequency to ensure that the users

of that line are not burdened with excessive waiting times. Constraint (4) ensures

that the demand assigned to each route is equal to the share predicted by the route

choice model, multiplied by the original passenger demand and the demand multiplier

Γ. It is modeled as an inequality, but is effectively an equality constraint at optimality

given that, for the optimal solution, Γ will be as large as possible. Constraint (5)

is a temporal flow continuity constraint, ensuring that passengers must board the

second leg of a route after boarding the first leg, and so on. Finally, Constraint (6)

ensures that the number of passengers boarding each line during a time period does

not exceed the total capacity of the trains that arrive during that time period. If the

demand exceeds the capacity during the time period, some passengers will be forced

to board in subsequent periods, thus capturing the effects of denied boardings that

can occur in congested transit networks. Constraint (7) enforces integrality for the

line frequency variables.

All constraints except Constraint (4) are used in all three models of transit ca-

pacity flexibility. Let 𝑍partial represent the model of network capacity with partial

destination flexibility and 𝑍total represent the model of network capacity with total

destination flexibility. For 𝑍partial, Constraint (4) is replaced with Constraint (8),

and for 𝑍total, Constraint (4) is replaced with Constraint (9).
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𝑡∑︁
𝑡′=1

𝑧𝑢,𝑣,𝑟,1𝑡′ ≥
𝑡∑︁

𝑡′=1

𝑑𝑢,𝑣𝑡′ 𝜃
𝑢,𝑣,𝑟
𝑡′ (x) + (Γ − 1)

𝑡∑︁
𝑡′=1

⎛⎝ ∑︁
𝑣′∈dests(𝑢)

𝑑𝑢,𝑣
′

𝑡′

⎞⎠ 𝜃𝑢,𝑣,𝑟𝑡′ (x) (7.8)

∀𝑢 = 1, ..., 𝑁 ; ∀𝑣 ∈ dests(𝑢); ∀𝑟 ∈ routes(𝑢, 𝑣); ∀𝑡 = 1, ..., 𝑇

𝑡∑︁
𝑡′=1

𝑧𝑢,𝑣,𝑟,1𝑡′ ≥ Γ
𝑡∑︁

𝑡′=1

⎛⎝ ∑︁
𝑣∈dests(𝑢)

𝑑𝑢,𝑣𝑡′

⎞⎠ 𝜃𝑢,𝑣,𝑟𝑡′ (x) (7.9)

∀𝑢 = 1, ..., 𝑁 ; ∀𝑣 ∈ dests(𝑢); ∀𝑟 ∈ routes(𝑢, 𝑣); ∀𝑡 = 1, ..., 𝑇

Constraint (8) is for network capacity under partial destination flexibility. The

first term on the right-hand side requires the original origin-destination demand to

be distributed among the possible routes according to the route choice function 𝜃(x).

The second term requires that any new demand at origin 𝑢 is distributed according

to the route-destination choice function represented by 𝜃(x). The (Γ − 1) term is a

convention that simplifies the comparison of the optimal Γ values across each of the

three transit capacity flexibility measures. When Γ = 1, only the original demand is

included, similar to the result when Γ = 1 in the reserve capacity model. The partial

destination flexibility is only valid when Γ > 1, otherwise the problem reduces to

the reserve capacity model. Constraint (9) is for the total destination flexibility

model and enforces that the sum of the demand at every origin station is distributed

according to the destination and route choices predicted by the route-destination

choice function represented by 𝜃(x).
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7.3.1 Passenger choice functions

The route choice and route-destination choice functions used in this chapter are

modeled as multinomial logit functions, a common approach in the field of travel

demand modeling [284]. The model design is sufficiently flexible to permit a wide

range of choice function formulations, however. Other closed-form, differentiable

choice functions such as the nested logit function could be used in place of the

multinomial logit function without significant impact on tractability. Using common

choice functions that do not have a closed form but whose choice probabilities can

be simulated (e.g. mixed logit) is likely to increase computation time substantially.

The model design is also flexible with respect to the independent variables in-

cluded in the choice model. Exogenous independent variables and individual-specific

variables can be added to the choice functions with a negligible impact on tractability.

Independent variables that are functions of the decision variables (i.e. endogenous

independent variables) can also be included in the choice models, but may require

additional considerations. For example, crowding is included as an independent vari-

able in the route choice model, which is a dense function of the decision variables z.

To retain tractability, a near approximation of the actual crowding during each iter-

ation is used. The details of this approach are described in the Solution Algorithm

section.

Route choice function

The choice probability of route 𝑟 is given by:

𝜃𝑢,𝑣,𝑟𝑡 (x) =
exp(𝑉 𝑢,𝑣,𝑟

𝑡 (x))∑︀
𝑟′∈routes(𝑢,𝑣) exp(𝑉 𝑢,𝑣,𝑟′

𝑡 (x))
(7.10)
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where 𝑉 𝑢,𝑣,𝑟
𝑡 (x) is the utility of the route 𝑟. The utility of a route is a function of

the total journey time, which is given by the weighted sum of the waiting time and

the constant in-vehicle time, denoted by ∆(𝑢, 𝑣, 𝑟), and the disutility of crowding:

𝑉 𝑢,𝑣,𝑟
𝑡 (x) =

∑︀
𝑙∈legs(𝑢,𝑣,𝑟)

1
2𝑥𝑙

𝑡
+ ∆(𝑢, 𝑣, 𝑟)

+ 𝛽1

(︂∑︀
𝑙∈legs(𝑢,𝑣,𝑟) 𝜓

(︂∑︀
(𝑤,𝑣,𝑟,𝑖)∈passthru(𝑙,𝑢) 𝑧

𝑤,𝑣,𝑟,𝑖−1
𝑡

𝐾̄𝑙𝑥𝑙
𝑡

)︂)︂ (7.11)

In this formulation, the average waiting time is assumed to be half of the time

between successive train arrivals, which holds under the condition that passengers

arrive independently according to a Poisson process. The disutility of crowding is

a function of the occupancy of each leg of the journey, divided by a “comfortable”

capacity, 𝐾̄ 𝑙 ≤ 𝐾 𝑙. The function 𝜓(𝜅) is a convex and differentiable function such

that the disutility increases linearly up to the comfortable capacity threshold, and

then exponentially thereafter:

𝜓(𝜅) =

⎧⎪⎨⎪⎩𝜅, if 𝜅 ≤ 1

𝑒𝜅−1, otherwise
(7.12)

In practice, the set of “reasonable” routes for any given (𝑢, 𝑣) pair is much smaller

than the theoretical set of all possible routes, which could involve cycles or unneces-

sary transfers between transit lines. Given that the probability of selecting a given

route is a function of wait times and travel times, any routes with significant detours

or unnecessary transfers are very unlikely to be chosen. Heuristics to restrict the

choice sets routes(𝑢, 𝑣) to “reasonable” routes are therefore recommended, as they

can provide significant performance improvements without compromising modeling

accuracy. For example, the numerical experiment described in the following sec-
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tion omits any routes that exceed an upper limit on the travel time and number of

transfers relative to the shortest path.

Route-destination choice function

The route-destination choice function used to determine network capacity with par-

tial and total destination flexibility is similar to the route choice function from the

previous section. The choice probability is taken over the sum of all possible routes

and all possible destinations from any given origin station:

𝜃𝑢,𝑣,𝑟𝑡 (x) =
exp(𝑉 𝑢,𝑣,𝑟

𝑡 (x))∑︀
𝑣′∈dests(𝑢)

∑︀
𝑟′∈routes(𝑢,𝑣′) exp(𝑉 𝑢,𝑣′,𝑟′

𝑡 (x))
(7.13)

where dests(𝑢) is the set of destinations reachable from origin station 𝑢. The

new utility function 𝑉 𝑢,𝑣,𝑟
𝑡 (x) is no longer dependent on the route characteristics

exclusively, but also the destination characteristics:

𝑉 𝑢,𝑣,𝑟
𝑡 (x) =

∑︀
𝑙∈legs(𝑢,𝑣,𝑟)

1
2𝑥𝑙

𝑡
+ ∆(𝑢, 𝑣, 𝑟)

+ 𝛽1

(︂∑︀
𝑙∈legs(𝑢,𝑣,𝑟) 𝜓

(︂∑︀
(𝑤,𝑣,𝑟,𝑖)∈passthru(𝑙,𝑢) 𝑧

𝑤,𝑣,𝑟,𝑖
𝑡

𝐾̄𝑙𝑥𝑙
𝑡

)︂)︂
+ 𝛽2𝜔

𝑢,𝑣
𝑡

(7.14)

The parameter 𝜔𝑢,𝑣
𝑡 represents the relative utility of destination 𝑣 to travelers

departing from origin 𝑢 at time 𝑡, and 𝛽1, 𝛽2 are scaling parameters. The values of 𝜔𝑢,𝑣
𝑡

can be estimated using surveys or revealed preference data. For example, if someone

would be willing to travel an additional 10 minutes to reach a destination 𝑣 rather

than travel to destination 𝑣′, simply set 𝜔𝑢,𝑣
𝑡 −𝜔𝑢,𝑣′

𝑡 = 10/𝛽2. These values can also be

calibrated to replicate observed demand patterns or assumed for some hypothetical

future scenario. The impact of different settings for 𝜔 is explored through sensitivity
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analysis in the numerical experiment.

Both of these choice models are written assuming a homogeneous population with

identical preferences. It is possible to model heterogeneous preferences by dividing

the population into multiple groups with identical preferences and solving the route

and route-destination choice model for each group separately. This would, however,

add another index to the 𝑧 decision variable and increase the number of decision

variables accordingly.

7.3.2 Solution algorithm

The multinomial logit functions described above are non-linear and non-convex in

the decision variables x. To resolve this issue, a first-order approximation approach

is used that optimizes over a local linear approximation of the multinomial logit

function. Taking an initial point x̄, the value of 𝜃𝑢,𝑣,𝑟𝑡 (x̄,x) is approximated with

𝜃𝑢,𝑣,𝑟𝑡 (x̄) +∇𝜃𝑢,𝑣,𝑟𝑡 (x̄)′(x− x̄). An identical approach is used to approximate 𝜃𝑢,𝑣,𝑟𝑡 (x)

This approximation is reasonably accurate when the new point x is near the initial

point x̄. Beginning with a feasible warm start, a new xj is found for each iteration

𝑗 = 1, ..., 𝐽 by solving the model with the additional constraint:

x𝑗−1 − 𝜂 ≤ x ≤ x𝑗−1 + 𝜂 (7.15)

where 𝜂 is a constant representing the step size for the frequencies within which

the local approximation is considered accurate. The value of 𝜂 should be chosen such

that the linear approximation remains accurate while being large enough to limit the

number of iterations needed for convergence.

As mentioned earlier, the full occupancy expression in (14) is a dense function

of the decision variables z. To simplify the model, the occupancy at the previous
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iteration is used rather than the full expression. Given that the step sizes 𝜂 are

relatively small, this provides a reasonable estimate of the occupancy at the current

iteration.

Since the original problem is non-convex, the solutions may converge to a local

optima rather than the global optima. To mitigate this concern, 𝑛 randomized warm

starts are generated and the solution with the maximal objective value is selected.

The first-order local approximation approach resolves the non-convex multino-

mial logit function for passenger destination and route choice. There is, however,

an additional source of non-linearity in the transit capacity flexibility model. The

reserve capacity model includes Constraint (4), while the partial destination flexibil-

ity and total destination flexibility models include Constraints (8) and (9), each of

which contains a product of the decision variable Γ and the linearized choice function

𝜃𝑢,𝑣,𝑟𝑡 (x). As a result, the transit capacity flexibility models are mixed-integer non-

linear programs (MINLPs). There are two primary means of solving these MINLPs.

The first is to use traditional non-linear integer program solution procedures, such

as a non-linear branch-and-cut algorithm. Many state-of-the-art commercial solvers,

including Gurobi, have recently developed the capability to solve a range of MINLPs,

although computation time can be a concern even for moderate problem sizes due

to the complexity of non-linear problems. Moreover, the convergence of the iterative

first-order approximation method towards even a local optimum is no longer guaran-

teed due to the non-linear Γ * 𝜃𝑢,𝑣,𝑟𝑡 (x) term in constraints (4), (8) and (9), although

when 𝜂 is small, the MINLP approach can return relatively good solutions.

To improve both the solution quality and computation time, an alternative heuris-

tic approach is proposed for solving the transit capacity flexibility model. It involves

iteratively solving the model for fixed values of Γ, which eliminates the non-linear

constraints, and checking the resulting mixed-integer linear program (MIP) for fea-
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sible solutions. The MIP version of each capacity flexibility model has the same

constraints and variables as the MINLP version, but a fixed value of Γ:

𝑍MIP
reserve(Γ) = max

𝑥,𝑧
Γ (7.16)

s.t. (2) - (7), (14)

Starting at a low value (e.g. Γ = 1), Γ is incremented by a small constant 𝜀

until no feasible solution can be found. The largest value of Γ for which there exists

a feasible solution is the optimal solution to the MINLP. The convergence speed is

highly dependent on the choice of 𝜀. An adaptive approach is proposed wherein 𝜀 is

adjusted between iterations to grow quickly at the beginning and then more slowly

when approaching the maximum value of Γ.

With this iterative solution method, finding a feasible warm start, which is re-

quired for initializing the first-order linear approximation algorithm, becomes more

and more difficult as Γ approaches the optimal value. The infeasible warm start issue

can be resolved by relaxing the budget constraint (2) and applying a heavy objective

penalty to any solutions that violate the constraint. Since Γ is constant, the relaxed

model can be written as:

𝑍R
reserve(Γ) = min

𝑥,𝑧

(︃
𝑇∑︁
𝑡=1

𝐿∑︁
𝑙=1

𝑐𝑙𝑥𝑙𝑡 −𝐵

)︃
(7.17)

s.t. (3) - (7), (14)

The relaxed versions of the other two models, denoted by 𝑍R
partial and 𝑍R

total, are
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similarly derived. The relaxation allows feasible warm starts to be generated. Due

to the relaxation, the termination condition for the relaxed problem must include

any cases where the objective value 𝑍𝑅 > 0, as this represents an infeasible solution

to the initial problem. The choice of a warm start becomes an important design

choice for this solution method. If the values of x0 are small, the warm start risks

being infeasible when Γ approaches the optimal value. If x0 values are too large, the

solution method will involve many iterations of the first-order approximation, given

that the initial values will be highly suboptimal and the step sizes at each iteration

are limited by (14).

The advantage of the iterative approach is that it only involves solving a MIP

at each iteration, which is much faster than solving an MINLP, especially for larger

problem sizes. This approach also allows the first-order approximation algorithm to

be terminated as soon as a feasible solution to the original problem is found, since

in this case only a feasible solution is needed for a given value of Γ, rather than an

optimal solution. In addition, it allows the modeler to reduce computation time if

they have a priori knowledge of a tight lower bound on Γ. Tight lower bounds can be

easy to determine when the model is run repeatedly with minor adjustments to the

network or input parameters. The downside is that without an initial lower bound,

this solution method can involve solving the overall problem many times to reach

optimality, in addition to the iterative procedure for the first-order approximation

that may be required to find a feasible solution for each value of Γ. The overall

solution algorithm is summarized below, using the reserve capacity model as an

example.
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Algorithm 1 Transit Capacity Flexibility Solution Algorithm
Γ0 = 1
𝑖 = 0
while 𝑍MIP(Γ𝑖) feasible do (loop 1)

𝑖 = 𝑖+ 1
for 𝑘 = 1, ..., 𝑛 do (loop 2)

Generate a random warm start
Solve 𝑍𝑅(Γ𝑖)
if 𝑍𝑅(Γ𝑖) < 0 then

Γ𝑖 = Γ𝑖−1 + 𝜀
exit loop 2

else if 𝑘 = 𝑛 then
exit loop 1 (no feasible solution)

end if
end for

end while
Γ𝑜𝑝𝑡 = Γ𝑖−1

7.4 Numerical experiment

7.4.1 Experiment design

To demonstrate the ability of these new models to generate insights for a large

transit network, an experiment was designed using the full 2019 MBTA rail network

with eight route patterns and 121 stations. The experimental network includes the

entirety of the existing rail lines (Red, Blue, Orange, and Green) in both directions.

Because the Red Line has two branches and the Green Line has four branches, the

test network features nine bidirectional lines (𝐿 = 18). Transfers between lines can

be made at 22 of the 114 stations. The Ashmont-Mattapan Trolley line, a short

streetcar extension of the Red Line, was excluded due to a lack of demand data, and

the Silver Line bus routes were also excluded. The test network topology is shown

in Figure 7-1 below.
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Figure 7-1: Map of the 2019 MBTA rapid transit network used as the basis for the
numerical experiment
Source: Massachusetts Bay Transportation Authority [285]

Given the size of the network, many origin-destination pairs have dozens or hun-

dreds of possible alternative routes. To limit the size of the problem, routes were
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only considered valid if they involved no more than one additional leg (i.e. transfer)

compared to the shortest path. The choice probabilities for other, more circuitous

routes with multiple transfers are likely to be very small due to the much higher

waiting time and travel time relative to the shortest path.

The resulting baseline model has 𝐿 = 18 integer 𝑥𝑙𝑡 variables and 8,394 continuous

𝑧𝑢,𝑣,𝑟,𝑖𝑡 variables per time period. The problem was solved using real origin-destination

demand data, train maximum and comfortable capacities, existing frequencies, and

the number of available trains. All of the input data was collected from the MBTA for

the pre-pandemic period (January 2019), which was shared with the author through

a formal research partnership. Each of the transit capacity flexibility models was

solved for four 15-minute periods (𝑇 = 4) in the AM peak period (8:00 AM - 9:00

AM) using the iterative MIP solution algorithm described in the previous section.

Twenty warm starts for the first-order approximation algorithm were used in each

iteration.

The partial and total destination flexibility models both contain a destination

choice function. To illustrate how these models can be used in long-term transit

planning, the maximum demand multiplier was determined for two destination utility

scenarios representing alternative commuting paradigms. These scenarios were coded

into the model by adjusting the values of 𝜔𝑢,𝑣
𝑡 in (14).

The “Centralized” (C) scenario represents a return to the pre-pandemic travel pat-

terns, where many of the most visited destinations are located in the central business

district in downtown Boston. As previous transit capacity flexibility models have not

been applied to actual transit networks, there has been no previous discussion about

choosing accurate destination utilities for the partial and total destination flexibility

models. The destination utilities were calibrated using the 2019 origin-destination

demand matrix as ground truth data to ensure that the experiment would replicate
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observed demand patterns. The destination utilities 𝜔𝑢,𝑣
𝑡 were adjusted using an

iterative approach until the root-mean-square error between the observed visits to

each destination and the estimated visits to each destination was minimized. As a

result, the optimal solutions for reserve capacity and total destination flexibility in

the Centralized scenario are expected to be quite similar. Any variation in the opti-

mal solutions would be a result of the increased destination flexibility of the modeled

riders, allowing them to deviate from their observed destination choice only when

travel becomes highly inconvenient. This is more realistic for discretionary trips than

the reserve capacity model, which retains the original destinations regardless of the

performance of the transit network.

The “Decentralized” (DC) scenario represents a possible future where employers

shift towards satellite offices and co-working spaces spread across a region to re-

duce the commuting burden for employees. This possible future is hypothesized as

a potential outcome of the widespread adoption of remote work catalyzed by the

COVID-19 pandemic and is referred to as “working close to home” in the literature

[223]. For the Decentralized scenario, 𝜔𝑢,𝑣
𝑡 was decreased by 15% for all stations in

or adjacent to Boston’s central business district and increased by 15% for selected

peripheral stations (e.g. Coolidge Corner, Jackson Square, Quincy Center). In this

way, the Decentralized scenario represents a shift in destination preferences away

from downtown cores and towards regional sub-centers and smaller retail-oriented

areas.

Note that the numerical experiment assumes that available train sets can be de-

ployed on any of the MBTA rail lines, which is not possible in practice due to varying

operational characteristics. For this test case, however, using an aggregate budget

provides more flexibility to the operator and thus better illustrates the differences

between the capacity flexibility measures. Moreover, many U.S. and international
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rapid transit systems are designed to allow the same trains to be used on most or

all of the lines (e.g. Washington DC, Copenhagen, Sydney). Train sets can easily be

restricted to specific lines in the model by changing constraint (2) from an aggregate

budget to a line-specific budget.

7.4.2 Results

All results are presented in Table 7.1 below, including the computation times for the

iterative MIP solution method and the direct MINLP solution method. Given that

the warm starts are stochastic and have a strong impact on the quality of the direct

MINLP solutions, the mean solution and computation time across 5 model runs is

reported. The model was implemented in Julia and solved using Gurobi version

10.0.0 on a dual-core Intel i7-6600U CPU with 16 GB of RAM.

Baseline and reserve capacity

First, a baseline version of the model with line frequencies fixed to the existing

MBTA arrival frequencies was solved. The result provides a benchmark evaluation

of the reserve capacity of the network as it exists today, without any adjustments

to the schedule, and is referred to as the “existing capacity” (EC). For the baseline

model, Γ = 1.29, suggesting that even without adjusting frequencies, the current

origin-destination demand matrix could be increased by 29% without exceeding the

capacity of the network. This limited slack in the network is consistent with a transit

system that nears capacity during the AM peak period. The model is already linear

due to the fixed frequencies, so the iterative method is not needed.

Then the Reserve Capacity (RC) model was solved. The results improve sub-

stantially compared to the fixed-frequency model; the network can accommodate a
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demand multiplier of Γ = 4.11 by adjusting line frequencies to match the distribution

of demand during the given time period. Solving the relaxed MIP took an average

of 15 seconds per iteration, with a minimum computation time of 4.04 seconds and

a maximum of 31.14 seconds. Starting with Γ = 1 and incrementing by 1 until an

infeasible solution was found, then incrementing by 0.1 and finally 0.01 to improve

the precision of the result, the optimal solution was found in 1,051 seconds or about

17.5 minutes. This is a naive iteration strategy that could be improved with a priori

knowledge of the problem. More than half of the total solution time was spent con-

firming infeasibility for each of the twenty warm starts for each of the incrementation

steps (1, 0.1, and 0.01); a more efficient iteration strategy might begin with smaller

increments as it is generally much faster to confirm the existence of a feasible solution

than to verify infeasibility across all warm stars. Despite having to solve the model

70 times, the iterative method significantly outperforms the direct MINLP solution

method due to shorter computation times in each step, thus reducing computation

time by 92.4%.

Metric Scenario
Iterative Direct Opt.

Gap
Time

Savings
Γ Time (s) Γ Time (s) (Direct) (Iterative)

EC - 1.29 68.7 - - - -
RC - 4.11 1051 4.06 13794 -1.2% -92.4%

PF
C 3.57 7864 3.49 38442 -2.2% -79.5%

DC 3.12 6097 3.09 35787 -1.0% -83.0%

TF
C 4.41 4703 4.32 14959 -2.0% -68.6%

DC 3.42 5421 3.28 15903 -4.1% -65.9%

Table 7.1: Optimal capacity flexibility results and computation times for the MBTA
network-based numerical experiment

Plotting the results of the two solution methods over time, shown in Figure 7-2
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highlights the strength of the iterative MIP solution approach. The iterative ap-

proach quickly confirms feasibility for Γ = 1, 2, 3, 4 in succession, then takes a mod-

erate amount of time to improve the precision of the incumbent solution to Γ = 4.1

and finally Γ = 4.11. The direction solution approach is much slower, taking an

average of 689 seconds to find a locally optimal solution for each warm start. While

some warm starts result in near-optimal solutions, the best result across all warm

starts still has an optimality gap of 1.2% relative to the iterative solution, which

was found in less than one-tenth of the computation time. Increasing the number of

warm starts could be expected to improve the average solution quality of the direct

MINLP method, but it would also increase the already long average computation

time.

Figure 7-2: Comparison of the incumbent objective value over time for the iterative
and direct solution methods
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Network capacity with flexibility

Next, the model was solved to optimality for Partial Destination Flexibility (PF)

under the Centralized (C) scenario. The maximum demand multiplier is Γ = 3.51,

which took 7864 seconds to compute with the iterative solution method. Intro-

ducing the destination choice model for all new riders combined with some fixed

origin-destination demand substantially increases the number of variables and con-

straints in the model, making it more difficult to solve for both methods. For the

Decentralized (DC) scenario, an optimal solution of Γ = 3.12 was found in somewhat

less computation time.

For both scenarios, the iterative method took about one-fifth of the time to

solve compared to the direct MINLP solver average and produced better solutions.

Solving the relaxed MIP during each iteration takes about the same amount of time

for the partial destination flexibility model and the reserve capacity model. The

overall computation time took substantially longer, however, because the model was

solved 126 times rather than just 70 times for the reserve capacity model. The

total number of iterations needed to find an optimal solution can be controlled by

modifying the Γ incrementation algorithm to match the problem, rather than using

the naive approach taken for benchmarking purposes.

The significant difference in capacity flexibility between the Centralized and De-

centralized scenarios implies that the network is better suited to handle increased

demand towards the central business district. For partial destination flexibility, the

decentralized destination preferences result in a reduction of capacity by 39% of the

original demand, or about 15,600 passengers per hour. This is largely by design; the

MBTA rail network has a “hub-and-spoke” topology, where all of the rail lines feed

into the downtown core with no opportunities to transfer between lines outside of the
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hub. Such networks are effective at delivering commuters in and out of downtown,

but limited capacity to handle increases in demand for the peripheral stations that

are only served by a single line. All passengers seeking to travel from a residen-

tial area on one line (e.g., Brookline Hills) to a regional sub-center on another line

(e.g., Harvard Square) must pass through the downtown core, creating additional

congestion in the busiest part of the network.

Finally, the network capacity with the total destination flexibility (TF) model was

solved for both scenarios. The optimal values of Γ were found to be 4.41 and 3.42

for the Centralized and Decentralized scenarios, respectively. The large gap between

the two scenarios is similar to the results for the partial destination flexibility model,

providing further evidence that the MBTA rail network can adapt better to increases

in demand oriented towards the central business district rather than demand oriented

towards the periphery of the service area. Once again, the iterative solution method

offers strong performance improvements, with solution times that are approximately

one-third of the direct MINLP solution computation times.

Comparing the three measures, it is evident that the reserve capacity and to-

tal flexibility results for the Centralized scenario are quite similar. The flexibility

to choose a different nearby destination when travel is inconvenient creates origin-

destination demand patterns that are slightly easier for the network to accommodate.

Interestingly, the partial destination flexibility measure is lower than both the reserve

and the total destination flexibility measures. Recall that the difference between the

models is that the partial destination flexibility measure retains the original origin-

destination demand, then adds new demand with flexible destinations. A mix of

fixed and flexible destinations is more difficult for the network to accommodate than

demand with entirely fixed or entirely flexible destinations.

The hypothesis that mixed demand is more difficult to service is supported by
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the optimal line frequencies (x) for each model, which are a function of the demand

patterns. The distribution of optimal line frequencies for each metric is shown in

Figure 7-3. For the reserve and total destination flexibility capacity models, the

optimal x values feature several lines with high frequencies (16 - 23 trains per hour)

and others at or near the minimum frequency (4 trains per hour). The median

value of x is 7.9 trains per hour for the reserve capacity metric and 7.6 for the total

destination flexibility metric. Conversely, the median of x for the partial destination

flexibility metric is 6.6 trains per hour, and the optimal frequencies are more even

across the lines. The mix of ridership fixed and flexible destinations, rather than a

demand profile with homogeneous behavior, forces the solution to provide moderate

service on all lines rather than concentrating resources on the most popular lines.

Figure 7-3: Distributions of optimal line frequency (𝑥𝑙) by transit capacity flexibil-
ity metric
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7.5 Discussion

This chapter creates new integer programming models and solution algorithms for

evaluating the capacity flexibility of a transit network. It demonstrates how re-

laxation and a novel iteration-based solution method can be used to solve larger

problems than the previous state of the art. The proposed solution method outper-

forms commercial solvers, and is shown to be tractable for a full-sized rapid transit

network with 18 lines and 114 stations, suggesting that this modeling framework and

solution method could be used to determine transit capacity flexibility for a range

of large networks in a reasonable timeframe.

The value of solving network-sized problems is illustrated using a numerical exper-

iment that models a highly topical problem for transit agencies: whether a network

can accommodate the changes in demand that might occur due to the rapid growth

in remote work. As only toy-sized models could be solved previously, transit capac-

ity flexibility has not been used as a measure for policy analysis. Transit agencies,

such as the MBTA, could use these models to evaluate the capacity of their networks

to handle changing demand during this uncertain time. The remote work example

is just one of many possible scenarios that could be evaluated using the modeling

framework developed in this chapter. The framework could also be used to eval-

uate alternative network expansion scenarios, or how the network would respond

to increased demand arising from future transit-oriented development. Determin-

ing which modeling constraints are binding could help to identify bottlenecks in the

network, and shadow prices from the budget constraint could be used to quantify

the potential capacity and flexibility gains from additional resources. The optimal x

values could also help to develop operating strategies and timetables that adapt to

new origin-destination patterns.
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There are many possible directions for this area of research in the future. First,

there are relatively straightforward technical improvements that could be made to

the solution algorithm. The total solution time is highly dependent on the number

of iterations, so a more sophisticated adaptive strategy for incrementing Γ, perhaps

based on machine learning techniques, is likely to provide significant performance

improvements. Problem-specific MIP or MINLP heuristics could also be investigated

to speed up the solution time within each iteration.

Next, some limitations of the experiment could be addressed. The experiment

could be expanded to include the full MBTA rail network or even the entire multi-

modal transit network with buses and commuter rail for a more comprehensive ac-

counting of the network capacity flexibility. As demonstrated in the experiment, this

modeling framework scales well with increasing complexity and could be expected

to remain tractable for much larger problem sizes, unlike previous transit capacity

flexibility models. In addition, the modeling of destination utility would benefit from

enhancements that reflect the complex decisions underlying destination choice, al-

though that area of research was not the focus of this chapter. Rather than static

values, destination utilities could be represented as stochastic variables, or hetero-

geneous across the population, or be modeled as a function of other endogenous or

exogenous modeling variables.

Finally, future work could include extensions and applications of this model-

ing framework to other problems. A comparative analysis of transit networks with

different topologies could offer insights into the capacity flexibility implications of

common network design philosophies. Practical tools, such as an open-source soft-

ware package for converting machine-readable transit network representations (e.g.

the Generalized Transit Feed Specification) into the inputs for this model, could be

developed to allow any transit agency to evaluate the capacity flexibility of their
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networks with little effort. Tractable model formulations for multi-modal network

capacity flexibility, perhaps based on robust optimization concepts, could also be

developed and compared.
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Chapter 8

Optimal location of shared

workplaces with social objectives

8.1 Introduction

The common term “working from home” belies the fact that remote workers in the

United States are choosing to work at shared workplaces for one-third of their remote

work hours on average [3] These shared workplaces, which include cafeś, libraries,

and co-working spaces, afford many of the social and productivity benefits of in-

person interactions while avoiding the congestion and environmental externalities

associated with the traditional commute. Yet transportation and land use policies

are still primarily designed around the outdated norm of repeated trips during peak

hours to a centralized workplace. The limited capacity of existing urban mobility

and land use systems to satisfy the observed demand for remote work at shared

workplaces has resulted in socially suboptimal outcomes. New data-driven policies

are needed to adapt urban mobility systems to the emerging travel demand patterns
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of the future of work.

Working at home has many benefits: reduced carbon emissions from commuting,

less time spent sitting in traffic, greater individual productivity, and improved worker

well-being. There are also downsides for workers, however: feelings of loneliness,

more distractions, and the cost of additional space and equipment, among others.

To many remote workers, “working close to home” at shared workplaces offers a

welcome balance between the isolation of home and the inconvenience of the primary

workplace.

Recently, governments have begun to recognize that shared workplaces can also

be used to mitigate the negative societal externalities of working from home. Working

from home has been shown to increase segregation between income groups in an urban

area, and reduce the number of spontaneous interactions that contribute to idea flow

and economic growth. It has also devastated the retail businesses that catered to

downtown workers. To address these issues, the Irish and Welsh governments have

each created a country-wide network of remote working hubs (see Figure 8-1). In

the United States, the state of Maine has established a grant program to encourage

private operators to build new co-working spaces. The Canadian government has

recently begun operating several shared workplaces for federal employees who work

remotely.

These early examples of public shared workplace development involve a prag-

matic, ad hoc approach to location selection, guided by general principles, avail-

ability of locations, and a set of societal goals. A formal optimization scheme for

selecting locations based on the specific objectives of the program is needed to ensure

that scarce resources (e.g. funding) are allocated in such a way that the benefits to

the public are maximized. Estimating the decisions of remote workers about where

to work, and incorporating societal goals into a facility location model, are both
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Figure 8-1: Locations of remote working hubs in the Irish government’s National
Hub network
Source: ConnectedHubs.ie [286]

significant methodological challenges, however.

This paper introduces a new modeling framework to optimize socially-optimal

collaborative workplace capacities and locations for the remote work era. The new

models address two areas of complexity specific to shared workplaces for remote

work: 1) heterogeneous preferences for shared workplaces across industries, occupa-

tions, and demographic groups, and 2) the potential for productivity and other social

goals in addition to system efficiency objectives. Integrating these areas of complex-

ity requires introducing concepts from organizational behavior into travel behavior
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modeling, a long overdue connection between two often disparate disciplines. More-

over, the need for continued cross-disciplinary collaboration is demonstrated through

the use of examples to show how relying on organizational behavior models and travel

behavior models in isolation can produce socially suboptimal outcomes in the context

of shared workplaces.

The proposed modeling framework has two primary areas of novelty. The first

contribution is to extend existing facility location and capacity model constraints to

capture the unique dynamics of workplace choice. A general random utility-based

destination choice model is incorporated in the optimization model to capture the

agency of remote workers to choose a work location (including working at home)

that maximizes their utility. An exterior approach allows non-linear choice models

to be modeled with linear constraints, preserving tractability. The second major

contribution is the design and evaluation of social objective functions for the shared

workplace location problem. System efficiency objectives (minimizing generalized

travel costs, maximizing demand) are compared against social objectives to maxi-

mize productivity, maximize the number of potential social interactions, and limit

social segregation, using concepts from the organizational behavior literature. Two

of the social objectives are quadratic functions of the decision variables; a compact

linearization formulation and cutting planes are derived to avoid loss of tractability.

The sensitivity of the results to different combinations of objectives is tested using

a realistic numerical experiment for the first time in the literature. Opportunities to

use this research to inform land use and transportation policy for remote work are

discussed.
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8.2 Literature review

Several recent papers have documented the use of third places by remote workers,

both before [71] and after the tremendous increase in remote work spurred by the

global COVID-19 pandemic [3]. These studies find that co-working spaces and other

shared workplaces are among the most popular third places for remote work. Early

research into location choice for so-called “telecommuting centers” found that careful

site selection is critical to success [89]. Additional empirical research has uncovered

the spatial, social, and political factors that influence the location of shared work-

places across the globe, including Finland [287], Italy [102], and the United States

[288]. Yu et al. [98] provides an overview of the literature on shared workplaces,

finding that they can produce a range of benefits, including reduced congestion and

pollution from travel, improved economic productivity, greater employee well-being,

lower fixed costs for employers and more opportunities for social interaction. Avdikos

and Papageorgiou [289] gives an excellent overview of government programs that seek

to capture some of these benefits by subsidizing or operating shared workplaces in

their jurisdictions.

The model proposed in this paper is an extension of the facility location problem,

a canonical integer programming problem with many variants. Facility location prob-

lems have been developed for locating freight distribution centers [290], emergency

response facilities [291], and retail outlets [292], among many other applications.

Farahani and Hekmatfar [293] provides an excellent description of the history and

taxonomy of facility location problems. The shared workplace location problem falls

within the class of “competitive facility location” problems [294], as remote workers

have the discretion to choose from any facility or reject all facilities (i.e. work at

home).
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Rather than a gravity-based or deterministic utility approach, which is often used

in literature, the shared workplace model incorporates a random utility function

for workplace choice. Specifically, a discrete choice model is proposed, of which

multinomial logit (MNL) is perhaps the most commonly used form [125]. The MNL

function yields a non-linear formulation, making it challenging to incorporate into

optimization problems while maintaining tractability. Benati and Hansen [295] was

one of the first papers to present linearization techniques for incorporating random

utility functions such as MNL into competitive facility location problems. Haase and

Müller [296] compares the performance of the Benati and Hansen [295] formulation

with two other proposed MNL linearization approaches. Shortly afterward, Mai

and Lodi [297] introduced the exterior simulation approach for linearization of a

mixed MNL model within a “maximum capture” facility location problem whose

objective is to maximize market share. Their approach leverages the convexity of

the objective function to design an efficient solution algorithm. Subsequent research

on the maximum capture problem has shown that different families of inequality cuts

can improve performance [298, 299].

The exterior simulation approach to linearizing discrete functions is based on the

technique proposed in Paneque et al. [300]. The authors use the pricing and capacity

allocation for parking services as a case study, demonstrating how the exterior ap-

proach allows differentiation of utility functions between customer segments. Recent

preprints have used the same approach to show how any discrete choice function can

be incorporated into the competitive facility location problem [301] and the “coop-

erative maximum capture” facility location problem [302]. Subsequent applications

of the method include optimizing the locations of electric vehicle charging stations

[303], air taxi skyports [304], and logistics hubs [305].

Only two previous projects are known to have investigated the problem of opti-
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mal site selection for shared workplaces. Mastio et al. [306] develops a site selection

model for co-working spaces to minimize total carbon emissions from commuting. In

an earlier paper, Logins et al. [307] designs a large-scale site selection and capacity

model for generic public facilities to minimize total travel time. Co-working spaces

are used as a hypothetical application in testing the computational performance

of the algorithm. Both papers use innovative methodologies to solve a challenging

problem: reducing the externalities of travel to shared workplaces. However, shared

workplaces have specific features that are not shared by generic public facilities. As

workplaces (rather than facilities for socializing, recreation, or leisure), their utiliza-

tion impacts individual and collective economic productivity. They also produce

social externalities beyond the travel costs used in the objective functions of previ-

ous models. Using an agent-based modeling approach, Ge et al. [86] show that the

congestion and pollution reductions associated with the use of shared workplaces

can be offset or even reversed by corporate remote work policies and organizational

structures, implying that organizational behavior is an essential component of shared

workplace site selection. Moreover, shared workplaces are shared and therefore rep-

resent an opportunity to increase social interactions and reduce social segregation

within an urban area. Extending site selection models to include complex social

objectives and realistic organizational behavior constraints remains a critical gap in

the literature.

8.3 Methods

The mixed-integer linear programming (MILP) model for the shared workplace lo-

cation problem is built in stages, starting with the canonical facility location model

as a foundation, then introducing new constraints and objectives specific to shared
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workspaces. Finally, a tight reformulation for solving the model with quadratic ob-

jective functions is proposed.

8.3.1 Facility location problem

The canonical capacitated facility location integer program (ILP) involves a set rep-

resenting the demand for facilities. The set ℐ will represent demand from a given

origin location, indexed by 𝑖. The demand at each location can be divided into dis-

joint sets of customers. Examples of customer segments could be income quantiles

or occupations. Customer segments should be used either to differentiate customers

whose preferences for shared workplaces will be estimated with different random util-

ity functions, or to differentiate customers who have disparate effects on the objective

function. For example, customer segments corresponding to income quartiles would

be used if the social objective is to encourage interactions across income groups to

avoid social segregation. The extreme case would be to assign each person to a sep-

arate group in order to model each decision-maker with a different utility function.

There is a tradeoff between the number of customer segments and the problem size,

however. The global set of passenger segments is denoted by 𝒥 , indexed by 𝑗. Let

𝐷𝑖𝑗 represent the total population of segment 𝑗 at origin location 𝑖.

The problem will also involve a set of potential shared workplace sites, 𝒦, which is

indexed by 𝑘. For the shared workplace problem, the set 𝒦 includes the “null” option

of working at home, which will be chosen if no shared workplaces offer sufficient

benefits to overcome the cost of travel. In describing the model, the work-from-

home location option will be denoted by 𝑘 = WFH. Finally, in order to capture the

stochasticity of the random utility-based discrete choice function, a set of scenarios,

denoted by ℛ, is introduced here and explained in the next subsection. The number
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of scenarios will be denoted by |𝑅|

There are two groups of binary decision variables: 𝑤𝑖𝑗𝑘𝑟, which represents the

decision to assign the demand segment 𝑗 from origin 𝑖 to the facility 𝑘 in scenario

𝑟, and 𝑦𝑘, which represents the decision to construct the facility 𝑘. The objective

function is often a minimization of the total travel time for all agents, but we will use

a generic function 𝑓(w,y) as a placeholder until specific objectives are introduced

in a later section. The capacitated facility location model can then be written as an

ILP:

𝑍 = min
𝑥,𝑦

𝑓(w,y) (8.1)∑︁
𝑘∈𝒦∖WFH

𝑦𝑘 = 𝐵 (8.2)

∑︁
𝑘∈𝒦

𝑤𝑖𝑗𝑘𝑟 ≤ 1 ∀𝑖 ∈ ℐ, 𝑗 ∈ 𝒥 , 𝑟 ∈ ℛ (8.3)

𝑤𝑖𝑗𝑘𝑟 ≤ 𝑦𝑘 ∀𝑖 ∈ ℐ, 𝑗 ∈ 𝒥 , 𝑙 ∈ 𝒦, 𝑟 ∈ ℛ (8.4)
1

|𝑅|
∑︁
𝑖∈ℐ

∑︁
𝑗∈𝒥

∑︁
𝑟∈ℛ

𝐷𝑖𝑗𝑤𝑖𝑗𝑘𝑟 ≤ 𝐶𝑘 ∀𝑘 ∈ 𝒦 ∖ WFH (8.5)

𝑤𝑖𝑗𝑘𝑟, 𝑦𝑘 ∈ {0, 1} ∀𝑖 ∈ ℐ, 𝑗 ∈ 𝒥 , 𝑘 ∈ 𝒦, 𝑟 ∈ ℛ (8.6)

Constraint (8.2) enforces that the number of facilities built is less than some bud-

geted number of facilities 𝐵. This can easily be converted to an aggregate budget

with facility-specific opening costs if desired. The constraints also enforce that de-

mand is assigned to no more than one location (8.3) per scenario, that agents can

only be assigned to locations that have been selected for opening, (8.4), and that

the capacity 𝐶𝑘 of each location 𝑘 is not exceeded (8.5). Note that constraint (8.5)

assumes that the true demand for each facility is the average of the demand across
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all |𝑅| simulation scenarios. Constraint (8.6) limits the decision variables to integer

values. Collectively, these variables and constraints create the foundation for the

shared workplace location model.

8.3.2 Modeling workplace choice

The choice of workplace for remote workers is estimated using exterior simulation

of an MNL discrete model. This approach, first proposed by Paneque et al. [300],

permits any discrete choice model form, including mixed logit. Given that remote

work was a very uncommon working arrangement until the COVID-19 pandemic,

few discrete choice models have been estimated for workplace choice, but there are

several examples of MNL being used for the decision between working at home and

working at a remote work hub [48, 37, 114, 41].

The utility of each location 𝑘 to the segment of workers 𝑗 at origin 𝑖 is determined

using a generic utility function with exogenous and endogenous variables. Exogenous

variables are any segment-specific or alternative-specific variables unaffected by the

problem’s decision variables (e.g., price sensitivity of the customer segment, or travel

time to reach the location). Endogenous variables are affected by the decision vari-

ables; variants of the shared workplace location problem could include admission

fees or facility amenities as decision variables. Given that these workplace features

affect workplace choice, they would be incorporated into the workplace choice utility

function as alternative-specific endogenous variables for all non-home locations. Let

𝑥exo represent the exogenous variables and 𝑥endo represent the endogenous variables.

Moreover, let 𝑉𝑖𝑗𝑘 represent the deterministic utility of alternative 𝑘 for segment 𝑗
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at location 𝑖. Then the 𝑉𝑖𝑗𝑘 is computed as follows:

𝑉𝑖𝑗𝑘(𝑥endo
𝑖𝑗𝑘 , 𝑥exo

𝑖𝑗𝑘 ) =
∑︁
𝑛

𝛽𝑖𝑗𝑘𝑛𝑥
endo
𝑖𝑗𝑘𝑛 + ℎ𝑖𝑗𝑘(𝑥exo

𝑖𝑗𝑘 ) (8.7)

where 𝑥endo
𝑖𝑗𝑘𝑛 is the 𝑛th endogenous variable associated with origin 𝑖, segment 𝑗

and location 𝑘. The exogenous variable utility function ℎ𝑖𝑗𝑘(𝑥exo
𝑖𝑗𝑘 ) is entirely separate

from the optimization model and can therefore be precomputed.

A random deviate, 𝜀𝑖𝑗𝑘, is then added to the deterministic utility term. For MNL,

𝜀𝑖𝑗𝑘 is assumed to be independent and identically distributed across 𝑖, 𝑗, and 𝑘, with

an extreme value distribution. The probability of choosing location 𝑘 is then given

by:

𝑃𝑖𝑗(𝑘|𝑥endo
𝑖𝑗𝑘 , 𝑥exo

𝑖𝑗𝑘 ) =
𝑦𝑘𝑒

𝑉𝑖𝑗𝑘(𝑥
endo
𝑖𝑗𝑘 ,𝑥exo

𝑖𝑗𝑘 )∑︀
𝑘 𝑦𝑘𝑒

𝑉𝑖𝑗𝑘(𝑥
endo
𝑖𝑗𝑘 ,𝑥exo

𝑖𝑗𝑘 )
(8.8)

This is a non-linear and non-convex function in the decision variables 𝑦𝑘, 𝑥endo
𝑖𝑗𝑘𝑛 .

Finding exact solutions to optimization models with random utility functions is there-

fore a significant challenge. The framework of [300] is used to specify the discrete

choice model in terms of utility, which is linear in the decision variables, rather than

the choice probability. This framework also permits more complex random utility

functions including mixed logit models.

The linearization framework captures the stochasticity of random utility models

by drawing from the distributions of 𝜀𝑖𝑗𝑘 across several scenarios. The continuous

variable 𝑈𝑖𝑗𝑘𝑟 =
∑︀

𝑛 𝛽𝑖𝑗𝑘𝑛𝑥
endo
𝑖𝑗𝑘𝑛 + 𝑓𝑖𝑗𝑘(𝑥exo

𝑖𝑗𝑘 ) + 𝜀𝑖𝑗𝑘𝑟 is used to represent the utility

of location 𝑘 to segment 𝑗 at origin 𝑖 in simulation 𝑟. If there are no endogenous

variables in the utility function, 𝑈𝑖𝑗𝑘𝑟 can be precomputed for all scenarios, otherwise

it is a linear function of the decision variables. It is assumed that the values of 𝑥endo
𝑖𝑗𝑘𝑛

are bounded, so upper and lower bounds for the utility across all locations in scenario
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𝑟 can be derived. Let 𝑙𝑖𝑗𝑟 and 𝑚𝑖𝑗𝑟 represent the lower and upper bounds on utility

across all locations.

Another term, called “discounted utility”, is introduced to ensure that only lo-

cations included in the optimal solution can be chosen by remote workers. Let the

discounted utility of location 𝑘 for segment 𝑗 at origin 𝑖 in scenario 𝑟 be represented

by 𝑧𝑖𝑗𝑘𝑟 ∈ R. Then the discounted utility 𝑧𝑖𝑗𝑘𝑟 should be equal to 𝑈𝑖𝑗𝑘𝑟 if 𝑦𝑘 = 1,

and some very low value (e.g.𝑙𝑖𝑗𝑟) otherwise. Then the following linear constraints

enforce the relationship between 𝑧𝑖𝑗𝑘𝑟 and 𝑈𝑖𝑗𝑘𝑟:

𝑧𝑖𝑗𝑘𝑟 ≤ 𝑈𝑖𝑗𝑘𝑟 ∀𝑖 ∈ ℐ, 𝑗 ∈ 𝒥 , 𝑘 ∈ 𝒦, 𝑟 ∈ ℛ (8.9)

𝑧𝑖𝑗𝑘𝑟 ≤ 𝑙𝑖𝑗𝑟 + 𝑦𝑘(𝑈𝑖𝑗𝑘𝑟 − 𝑙𝑖𝑗𝑟) ∀𝑖 ∈ ℐ, 𝑗 ∈ 𝒥 , 𝑘 ∈ 𝒦, 𝑟 ∈ ℛ (8.10)

𝑙𝑖𝑗𝑟 ≤ 𝑧𝑖𝑗𝑘𝑟 ∀𝑖 ∈ ℐ, 𝑗 ∈ 𝒥 , 𝑘 ∈ 𝒦, 𝑟 ∈ ℛ (8.11)

𝑈𝑖𝑗𝑘𝑟 − (1 − 𝑦𝑘)(𝑈𝑖𝑗𝑘𝑟 − 𝑙𝑖𝑗𝑟) ≤ 𝑧𝑖𝑗𝑘𝑟 ∀𝑖 ∈ ℐ, 𝑗 ∈ 𝒥 , 𝑘 ∈ 𝒦, 𝑟 ∈ ℛ (8.12)

𝑧𝑖𝑗𝑘𝑟 ∈ R ∀𝑖 ∈ ℐ, 𝑗 ∈ 𝒥 , 𝑘 ∈ 𝒦, 𝑟 ∈ ℛ (8.13)

The constraints (8.9) and (8.10) ensure that 𝑧𝑖𝑗𝑘𝑟 = 𝑈𝑖𝑗𝑘𝑟 when 𝑦𝑘 = 1, while the

constraints (8.12) and (8.11) ensure that 𝑧𝑖𝑗𝑘𝑟 = 𝑙𝑖𝑗𝑟 otherwise.

Lastly, the choice of location is modeled as the binary decision variable 𝑤𝑖𝑗𝑘𝑟,

which was introduced in the previous section. There can only be one location chosen

by each segment 𝑗 at each origin 𝑖 in scenario 𝑟, which is already enforced by (8.3).

Furthermore, (8.4) ensures that only an available facility is chosen. That choice

should also correspond to the available location that provides the greatest discounted

utility. Let the continuous decision variable 𝑢𝑖𝑗𝑟 represent the maximum utility for

the segment 𝑗 at origin 𝑖 in scenario 𝑟 across all locations. The following constraints
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ensure that the location with the greatest discounted utility is chosen:

𝑧𝑖𝑗𝑘𝑟 ≤ 𝑢𝑖𝑗𝑟 ∀𝑖 ∈ ℐ, 𝑗 ∈ 𝒥 , 𝑘 ∈ 𝒦, 𝑟 ∈ ℛ (8.14)

𝑢𝑖𝑗𝑟 ≤ 𝑧𝑖𝑗𝑘𝑟 + (1 − 𝑤𝑖𝑗𝑘𝑟)(𝑚𝑖𝑘𝑟 − 𝑙𝑖𝑗𝑟) ∀𝑖 ∈ ℐ, 𝑗 ∈ 𝒥 , 𝑘 ∈ 𝒦, 𝑟 ∈ ℛ (8.15)

𝑢𝑖𝑗𝑟 ∈ R ∀𝑖 ∈ ℐ, 𝑗 ∈ 𝒥 , 𝑟 ∈ ℛ (8.16)

This framework captures the choice of workplace location by a remote worker

with purely linear constraints. The option to work at home is also included in the

choice set. The generic shared workplace location problem with a linearized random

utility destination choice function is then to optimize over the set of decision variables

u,w,y, z, subject to constraints (8.2) - (8.6) and (8.9) - (8.16). Assuming a linear

objective function, it is a MILP with continuous and binary decision variables.

8.3.3 Modeling social objectives

The shared workplace location problem framework permits a variety of objective

functions to optimize for the many different social goals that a public shared work-

place incentive program might have. There are three key stakeholders in the estab-

lishment of shared workplaces: remote workers, workplace operators, and govern-

ments who are interested in benefits to society as a whole. When the workplace is

established by the public sector (e.g. a library renovated to accommodate remote

work), the government also acts as the workplace operator. In this section, five dif-

ferent classes of objective functions are presented, each aligned with a specific social

goal and each having implications for one or more stakeholder groups. A summary

of the objectives is provided in Table 8.1 below.

The first class of objective function is typical for the canonical facility location

249



Social goal Stakeholders Function Complexity
Minimize travel costs Workers, Society (8.17) Linear

Maximize travel benefits Workers,
Operators

(8.18) Linear

Maximize interaction benefits Workers, Society (8.20) Non-Linear,
Non-Convex

Maximize social mixing interac-
tions Workers, Society (8.21) Non-Linear,

Non-Convex

Maximize diversity of visitors Workers, Society (8.22) Non-Linear

Table 8.1: Summary of potential objective functions for the shared workplace lo-
cation problem

problem: minimizing the total individual or social travel cost. The classical cost

measure is travel distance, but different coefficients for each segment-origin-location

combination can be used to represent other costs such as generalized travel cost

(which may include travel time and travel expenses), or carbon emissions from travel.

Any travel cost coefficients associated with working at home should be set to zero.

Depending on the cost measure, this objective affects remote workers (who prefer

minimal travel costs) or governments (who prefer less congestion), or both. If the

generic cost coefficient for the assignment of customer segment 𝑗 from origin 𝑖 to

represented by 𝑐𝑖𝑗𝑘𝑟, then the first class of objective functions can be represented by

𝑍1:

𝑍1 = min
𝑢,𝑤,𝑦,𝑧

∑︁
𝑖∈ℐ

∑︁
𝑗∈𝒥

∑︁
𝑘∈𝒦

∑︁
𝑟∈ℛ

𝑐𝑖𝑗𝑘𝑟𝑤𝑖𝑗𝑘𝑟 (8.17)

The second class of objective function is simply the opposite of the first: maxi-

mizing the total individual or operator benefits that arise from traveling to a shared
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workplace. This might include maximizing demand for workplaces, which benefits

the workplace operator. Similarly, if the operator has different revenue or profit

margins for each customer segment, those benefits can be maximized by setting the

benefits coefficients of the objective function, 𝑐𝑖𝑗𝑘𝑟 accordingly. One major benefit of

embedding the linearized discrete choice model in the shared workplace problem is

that customer utility associated with any feasible solution is known. This objective

could therefore maximize customer utility by setting 𝑐𝑖𝑗𝑘𝑟 equal to 𝑈𝑖𝑗𝑘𝑟. If 𝑈𝑖𝑗𝑘𝑟

is a function of endogenous variables, the objective function would be a non-linear

product of decision variables, but the product of a bounded continuous variable and

a binary variable can easily be linearized through substitution [308]. The functional

form of the second class of objectives is as follows:

𝑍2 = max
𝑢,𝑤,𝑦,𝑧

∑︁
𝑖∈ℐ

∑︁
𝑗∈𝒥

∑︁
𝑘∈𝒦

∑︁
𝑟∈ℛ

𝑐𝑖𝑗𝑘𝑟𝑤𝑖𝑗𝑘𝑟 (8.18)

The third class of objective functions is a non-traditional objective for the facility

location: maximizing interaction opportunities between remote workers. Widespread

remote work reduces the spontaneous face-to-face interactions between associates or

even strangers that lead to the building of social networks and the spreading of ideas

across regional populations [10, 309, 310]. These interactions are widely accepted

to be one of the main drivers of the economic advantage of modern cities [311], and

their reduction is a major concern for urban leaders [312]. Shared workplaces are

one opportunity to encourage these productive interactions; working at co-working

spaces has recently been shown to increase self-reported feelings of innovation relative

to working at home [313]. The economic benefits of social interactions are primarily

realized by governments and the remote workers themselves.

An interaction opportunity exists if two segments choose to work from the same
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non-home location. As a result, the objective function for maximizing interaction

opportunities is non-linear and non-convex, as it involves the product of the binary

choice variables. The objective can involve maximizing total interaction opportu-

nities, with no preference for interactions within a segment or between particular

segments, or it can be weighted to favor interactions that are expected to have a

greater impact on social goals. For example, if segments are defined according to

work industry or occupation, then within-segment interaction opportunities might

have a better chance of producing knowledge transfer than across-segment interaction

opportunities. Moreover, the objective coefficients can be weighted to favor interac-

tion opportunities at specific locations; some shared workplace locations might be

more conducive to socializing than others. The interaction weight coefficient 𝑠𝑗𝑙𝑘 can

be used to weight interaction opportunities between segments 𝑗 and 𝑙 at location

𝑘 accordingly. Maximizing interaction opportunities is likely to produce similar so-

lutions to maximizing demand, but favor solutions where most remote workers are

concentrated at a few locations. For brevity, the total population of remote workers

of segment 𝑗 who choose location 𝑘 is denoted by:

𝑝𝑗𝑘 =
∑︁
𝑖∈ℐ

∑︁
𝑟∈ℛ

𝐷𝑖𝑗𝑤𝑖𝑗𝑘𝑟

|𝑅|
(8.19)

The objective function for maximizing interaction opportunities is then given by:

𝑍3 = max
𝑢,𝑤,𝑦,𝑧

∑︁
𝑘∈𝒦∖WFH

⎡⎣∑︁
𝑗∈𝒥

∑︁
𝑙∈𝒥∖𝑗

𝑠𝑗𝑙𝑘𝑝𝑗𝑘𝑝𝑙𝑘 +
∑︁
𝑗∈𝒥

𝑠𝑗𝑗𝑘𝑝𝑗𝑘(𝑝𝑗𝑘 − 1)

⎤⎦ (8.20)

The fourth class of objective functions is a special case of the third class: max-

imizing social mixing opportunities. Remote work has been shown to reduce the

income diversity of interactions at urban destinations [11], which impairs the devel-
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opment of social capital and economic growth. Governments may therefore include

interactions across social groups as a goal for shared workplace development. The

solution for maximum social mixing is likely to be similar to the solution for 𝑍3,

although with more emphasis on shared workplace locations that attract a diverse

group of remote workers. For this objective, it is assumed that the customer seg-

ments are defined such that they represent the social classes targeted for mixing.

As before, interaction opportunities between segments can be weighted differently,

as it might be more beneficial to have interactions between the first and second in-

come quartiles than interactions between the first and fourth quartiles. Then, as

within-group interactions no longer have benefits, the objective function reduces to

the following non-linear, non-convex formulation:

𝑍4 = max
𝑢,𝑤,𝑦,𝑧

∑︁
𝑘∈𝒦∖WFH

∑︁
𝑗∈𝒥

∑︁
𝑙∈𝒥∖𝑗

𝑠𝑗𝑙𝑘𝑝𝑗𝑘𝑝𝑙𝑘 (8.21)

The fifth and final class of objectives is also intended to mitigate the decreasing

diversity of urban interactions. Rather than maximizing total interactions across

social groups, however, it seeks to ensure that each shared workplace is chosen by

a diverse group of remote workers. This approach treats the experience of remote

workers at each workplace equally, and does not result in the concentration of remote

workers at a few highly popular locations in order to maximize interaction opportu-

nities. The objective is constructed to minimize the deviation between the diversity

of the visitors to each location and the diversity of the population as a whole. Let

𝑄𝑗 represent the share of segment 𝑗 in the population. Then the final objective can
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be written as follows:

𝑍5 = min
𝑢,𝑥,𝑦,𝑧

∑︁
𝑘∈𝒦∖WFH

∑︁
𝑗∈𝒥

⃒⃒⃒⃒
𝑝𝑗𝑘∑︀
𝑗∈𝒥 𝑝𝑗𝑘

−𝑄𝑗

⃒⃒⃒⃒
(8.22)

Together, these five classes of objective functions enable the shared workplace

problem to address many of the costs and benefits of remote work. The objectives

can also be combined in a multi-objective optimization or Pareto optimization frame-

work to quantify the trade-offs and complementarity of the social goals for shared

workplaces. The implications of each objective function and combinations of multiple

objectives in practice are explored further in Section 8.4.

8.3.4 Reformulation of quadratic objectives

The objectives 𝑍1 and 𝑍2 are linear in the decision variables and thus allow their

respective models to be solved as MILPs. While the simplest version of the facility

location problem is known to be NP-hard, modern solvers are able to solve even large

problems in a reasonable timeframe. The absolute value penalty in objective 𝑍5 can

also be linearized easily through substitution [314] with a negligible impact on the size

of the problem. The objectives 𝑍3 through 𝑍4 are non-linear and non-convex in the

decision variables, however, making them difficult to solve directly even with state-

of-the-art solvers. Moreover, the standard Glover-Woolsey linearization technique

for binary quadratic functions involves introducing new variables and constraints

for each quadratic term in the objective function [315], resulting in a set of binary

variables and related constraints that grow exponentially with the number of feasible

customer choices 𝑤(𝑖, 𝑗, 𝑘, 𝑟).

A technique known as the reformulation-linearization technique (RLT) can be
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used to improve the tightness of the formulation and reduce the number of additional

constraints [316, 317]. For ease of notation, assume that the set of origin-segment-

scenario triplets (𝑖, 𝑗, 𝑟) is denoted by 𝒜, and ordered in some fashion with index 𝑎.

The choice variable 𝑤𝑖𝑗𝑘𝑟 can then be replaced by 𝑤𝑎𝑘. A new continuous variable

𝛾𝑎𝑘𝑏𝑚 is used to substitute for each binary quadratic term 𝑤𝑎𝑘𝑤𝑏𝑚 in the objective

function. Then the following constraints are added to ensure equivalency between

the reformulation and the original binary quadratic program [317].

∑︁
𝑘∈𝒦

𝛾𝑎𝑘𝑏𝑚 = 𝑤𝑏𝑚 ∀𝑎 < 𝑏, 𝑏 ∈ 𝒜,𝑚 ∈ 𝒦 (8.23)

∑︁
𝑘∈𝒦

𝛾𝑏𝑚𝑎𝑘 = 𝑤𝑏𝑚 ∀𝑎 > 𝑏, 𝑏 ∈ 𝒜,𝑚 ∈ 𝒦 (8.24)

𝛾𝑎𝑘𝑏𝑚 ≥ 0 ∀𝑎, 𝑏 ∈ 𝒜, 𝑘,𝑚 ∈ 𝒦 (8.25)

As shown in Zetina et al. [317], the formulation can be tightened further by adding

more and more polynomial constraints, but the computational benefits of the tighter

formulation are generally offset by the increase in the model size. As shown in the

numerical experiment below, the RLT formulation above performs reasonably well

for realistic problem sizes.

Additional practical considerations for reducing computation time is to reduce

the size of the problem by eliminating infeasible (𝑖, 𝑘) pairs. One promising heuristic

to prune the number of feasible pairs is to apply a maximum travel distance beyond

which any remote worker is likely to choose to work at home. Additionally, if there

are no endogenous variables in the utility function, then any non-home location

whose utility is computed to be lower than the utility of working at home across all

scenarios can be eliminated as a feasible location choice for the corresponding origin-

segment pair. There are also trade-offs between accuracy and computation time
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when determining the appropriate number of scenarios to simulate and the number

of customer segments to include.

8.4 Numerical experiment

A numerical experiment is constructed based on a plausible real-life scenario to

demonstrate the practical applications of the shared workplace location model and

to test the performance of the model as formulated. The experiment imagines that

public funding has been obtained to renovate five existing libraries in order to accom-

modate collaborative remote work. The Boston Public Library (BPL) system, with

26 existing branches spread across the City of Boston, is used as the basis for the ex-

periment. The 176 populated census tracts within the City of Boston constitute the

set of origin locations. The four household income quartiles for the City of Boston are

used as the customer segments, with the employed population of each income group

by census tract taken from the 2021 American Community Survey 5-year estimates

[1]. Travel times are calculated from the census tract centroid to each library branch

using the road network and average driving speeds. The model is tested with 10

scenarios to simulate the stochasticity of the random utility function. The result is a

problem with set sizes |𝐼| = 176, |𝐽 | = 4, |𝐾| = 27 (26 library locations and 1 work-

at-home alternative), and |𝑅| = 10, producing as many as 190,080 feasible, binary

workplace choice variables. However, many (𝑖, 𝑗, 𝑘) combinations can by eliminating

non-competitive locations from the choice set of certain remote workers.

To simulate realistic workplace choice behavior, an MNL utility function for work-

place choice is estimated from a survey of remote workers: the SWAA [3]. As a

reminder, the SWAA is a national survey of U.S. adults above the age of 19, con-

ducted monthly since May 2020. The survey asks respondents about their chosen
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distribution of workplace choices between working at home, at their employer’s work-

place, or at a third place such as a co-working space or coffee shop. Respondents

also provide their estimates of travel time to each location and annual income. The

estimated MNL model includes travel distance as an alternative-specific endogenous

variable and income as an individual-specific, categorical endogenous variable. The

alternative-specific constant for the work-at-home alternative is set to 1 for scaling

when estimating the model. The results of the model estimation are provided in Ta-

ble 8.2 below. As expected, working at a third place is somewhat less popular than

working from home in general, and decreases in popularity with increased travel time.

However, working from third places is relatively more popular among the two upper

income quartiles. The estimated coefficient for the second income quartile was not

found to be statistically significant and was therefore excluded from the workplace

choice model.

Parameter Estimated
Coeffi-
cient

Standard
Error

𝑃 > |𝑧|

Third place alternative-specific constant
(𝛽0)

-0.3337 0.049 0.000

Third place travel time (min) (𝛽𝑡𝑡) -0.0037 0.001 0.000
Income Q2 (𝛽𝑄2) -0.0427 0.052 0.411
Income Q3 (𝛽𝑄3) 0.2206 0.051 0.000
Income Q4 (𝛽𝑄4) 0.4448 0.058 0.000

Table 8.2: MNL model estimation results for shared workplace choice

Note that for the three lowest income quartiles, both the third place alternative-

specific constant and the distance coefficient are negative. These estimation results

imply that working from home is the expected choice for those below the top income

quartile, and third places are only chosen when the random utility deviate is positive
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and sufficiently large. This aligns with existing data on workplace choice, which

show that working from home is considerably more popular than working at a third

place Barrero et al. [3]. It also seems reasonable that there would be many factors

beyond income and travel distance that contribute to the choice between working at

a third place and working at home. Indeed, Asmussen et al. [169], using a different

model structure, finds that a wide range of geographic, job-related, and demographic

factors contribute to the choice of workplace for remote workers in Texas. Rather

than focusing on the comprehensiveness and goodness-of-fit of the MNL model, this

experiment seeks to represent expected aggregate workplace choice behavior (i.e.

working at third places represents a small but consequential share of remote work

hours, and the probability of selection decreases with distance from home) in order

to test the shared workplace choice model in a realistic setting. The sensitivity of

the results to changes in the estimated MNL model parameters is provided in C,

and other discrete choice model designs can easily be incorporated into the shared

workplace location problem in the future.

To account for people unable to work remotely, the employed populations in

each customer segment were reduced by a fixed percentage across all census tracts.

Remote work days as a percent of all worked days by income quartile was computed

from the most recent (May 2023) SWAA survey data. These are national results

scaled to the demographics of the U.S. population to mitigate any sampling bias.

The results for remote work as a percentage of all worked days by income quartile

are presented in Table 8.3.

The shared workplaces are assumed to be free to the public and operationally

identical, so the location choice model does not include any endogenous variables

such as the price of admission or quality of amenities. As a result, the utility of each

location to each customer segment can be pre-computed. Choice variables associated
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Income Quartile Remote Work Percentage
Q1 29.8%
Q2 35.4%
Q3 55.2%
Q4 65.6%

Table 8.3: Remote work percentage of total worked days by income quartile

with locations that are not chosen in any of the simulation scenarios were pruned from

the model to reduce the model size. For simplicity, it is assumed that the renovated

libraries are the only shared workplaces available, so the total number of visitors to

any given location is higher than would be expected if there were competition from

other private and public shared workplaces. Existing shared workplaces could be

incorporated into the model as alternative locations with the restriction that 𝑦𝑖 = 1

for all existing workplaces.

Five versions of the shared workplace location model were solved, each with a

different class of objective function:

1. Minimize total travel distance

2. Maximize total shared workplace demand

3. Maximize total interaction opportunities

4. Maximize total interactions opportunities between shared workplace users the

first and second income quartiles

5. Minimize total income segregation across all shared workplaces

In addition, a multi-objective version was solved with a weighted combination of

the first four objective functions. The weights are set such that a 1% deviation from
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the optimal value in any of the four individual objective terms is equivalent. Finally,

the Pareto frontier between the first two objectives is mapped to illustrate the policy

trade-offs between competing social goals.

For each model, the objective value is reported and a map with the locations

selected in the optimal solution are presented. Furthermore, the performance of each

model with respect to each of the five objectives is reported to illustrate how the

choice of objective affects social outcomes. The computation time required to reach

the optimal solution is also included; all experiments were implemented in Julia and

solved with Gurobi version 10.0.0 on a dual-core Intel i7-6600U CPU with 16GB of

RAM.

8.4.1 Objective #1: Minimize travel distance

On its own, minimizing travel would not be a reasonable goal for building new

shared workplaces, but it can be useful as a complement to other goals. The key to

minimizing travel distance is to choose the set of locations that maximizes working at

home, given that working at any shared workplace has a non-zero travel distance. It

is unsurprising, then, that the optimal solution involves selecting locations nearest to

the experiment boundary in neighborhoods with low population density relative to

other parts of Boston, as shown in Figure 8-2. The total population near the chosen

locations is minimized, and much of the population is too far from an available shared

workplace for the shared workplaces to represent a desirable alternative to working

at home.

The results in Table 8.4 show that the solution is effective in minimizing travel by

limiting demand for shared workplaces. The total travel distance is very small relative

to the other models because the demand is less than a quarter of the maximum
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Figure 8-2: Optimal locations for Objective #1: Minimize travel distance

possible demand. Only about 3.3% of the remote worker population chooses a shared

workplace. The interaction opportunities and interaction opportunities between the

lowest income quartiles, which are related to the demand, are similarly low compared

to other models. The linear objective function results in a very short computation

time.

8.4.2 Objective #2: Maximize shared workplace demand

As shown in Figure 8-3, the locations chosen in the optimal solution to the second

model have no overlap whatsoever with the locations chosen for the first model. The

disutility of travel distance to remote workers forces the maximum demand objec-
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Measure Value Optimal
Value

% of
Optimal

Travel distance (mi) 5,059 5,059 100%
Workplace users 8,996 40,899 22%
Interaction opportunities 10.72 M 173.23 M 6%
Q1-Q2 interaction opportunities 1.51 M 17.53 M 9%
Deviation from population diversity 0.0267 0.0205 131%
Computation time (s) 0.7

Table 8.4: Results for Objective #1: Minimize travel distance

tive produces to locate shared workplaces in central neighborhoods with the highest

population density, even when they appear close enough together to compete with

one another. Moreover, high income workers are more likely to have the opportunity

to work remotely, so the optimal solution chooses several locations near high in-

come neighborhoods such as Back Bay (Central branch) and Beacon Hill (West End

branch). This concentration of shared workplaces in central, high-income neigh-

borhoods is certainly good for maximizing utilization of the facilities, but does not

promote equal access across neighborhoods or income groups.

The demand for shared workplaces under the maximum demand objective is much

higher than the previous objective, at 15.1% of the remote worker population. This

comes at a cost of a 3.7x increase in travel distance. The optimal solution for this

model also performs well with respect to interaction opportunities, although there

remains a small gap compared to the result under Objective #3. The diversity of

the population is poor relative to the previous model and relative to the result under

Objective #4, which indicates that maximizing diversity is not complementary with

maximizing demand. Like the previous model, this model has a linear objective and

therefore can be solved very quickly.
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Figure 8-3: Optimal locations for Objective #2: Maximize demand

Measure Value Optimal
Value

% of
Optimal

Travel distance (mi) 18,569 5,059 367%
Workplace users 40,889 40,899 100%
Interaction opportunities 171.79 M 173.23 M 99.2%
Q1-Q2 interaction opportunities 15.81 M 17.53 M 90%
Deviation from population diversity 0.0430 0.0205 210%
Computation time (s) 0.7

Table 8.5: Results for Objective #2: Maximize demand

8.4.3 Objective #3: Maximize interaction opportunities

The optimal solution to the third model is similar to the previous solution, with only

one difference in location: the South Boston branch of the BPL is chosen instead
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of the West End branch. Figure 8-4 showns the selected locations. This choice set

eliminates some competition between the West End branch and nearby facilities, thus

slightly increasing the total number of visitors (and number of potential interactions)

at the three most central locations. It retains a high demand as South Boston is also

a relatively dense area. The spatial distribution is somewhat more diffuse than the

previous solution, although the chosen locations remain concentrated near the high-

density downtown core.

Figure 8-4: Optimal locations for Objective #2: Maximize demand

The optimal solution, by choosing a less central fifth location, slightly increases

the demand at the four locations that it shared with the previous model. As a result,

it creates more opportunities for interaction than the solution to the previous model,
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even though the demand for the fifth location is relatively low. Travel distances have

increased further despite the lower demand. As this model has a binary quadratic

objective, linearized using the RLT methods described in Section 8.3, it has a longer

but otherwise reasonable computation time.

Measure Value Optimal
Value

% of
Optimal

Travel distance (mi) 18,046 5,059 357%
Workplace users 40,793 40,899 99.7%
Interaction opportunities 173.23 M 173.23 M 100%
Q1-Q2 interaction opportunities 15.40 M 17.53 M 87.9%
Deviation from population diversity 0.0503 0.0205 246%
Computation time (s) 7.9

Table 8.6: Results for Objective #3: Maximize interaction opportunities

8.4.4 Objective #4: Maximize interaction opportunities be-

tween lowest income quartiles

The optimal solution shares three locations with each of the two previous models,

but chooses two new locations that are not part of any previous optimal solution.

Figure 8-5 presents the optimal locations for the fourth model. It retains the South

End, North End and East Boston branches, all of which have low income communities

nearby. The two new locations are in areas with high residential density and a mix

of low and middle income residents, including many students. By selecting these

locations, the solution retains a high overall demand, while attracting more demand

from the two lowest income quartiles.

This optimal solution performs relatively well with respect to demand and the

total interaction opportunity measures, although it is somewhat worse than both
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Figure 8-5: Optimal locations for Objective #4: Maximize interaction opportuni-
ties between lowest income quartiles

of the previous models. It also produces a high total travel distance. The income

diversity of the locations is reasonable due to the deliberate focus on attracting

visitors from the two lowest income quartiles, and it is better than the two previous

models. The computation time is also quite low, as there are many fewer quadratic

terms in the objective function relative to the previous model.

8.4.5 Objective #5: Minimize income segregation

Minimizing income segregation by attracting an equal share of each income quartile

to each location produces another unique set of locations. Figure 8-6 presents the
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Measure Value Optimal
Value

% of
Optimal

Travel distance (mi) 18,108 5,059 358%
Workplace users 36,400 40,899 89%
Interaction opportunities 148.90 M 173.23 M 86%
Q1-Q2 interaction opportunities 17.53 M 17.53 M 100%
Deviation from population diversity 0.0358 0.0205 175%
Computation time (s) 1.1

Table 8.7: Results for Objective #4: Maximize interaction opportunities between
lowest income quartiles

optimal locations along with the income quartile of the median household income

in each census tract. Unsurprisingly, most of the selected locations are located at

the intersection of different income groups. Notably, the selection avoids exclusively

high income areas, since the highest income quartiles are already over-represented in

the sample of remote workers.

This solution is actually relatively balanced compared to the previous models. It

has a moderate demand profile, with moderate opportunities for interactions. The

total travel distance remains much higher than the first model, but lower than models

2 - 4. As expected, it outperforms all other models with respect to diversity. The

computation time is also minimal due to the efficient linearization technique for the

absolute value functions in the objective function.

8.4.6 Multi-objective model

The last scenario is the multi-objective model, which combines the objectives of

each of the first four models. It produces yet another unique solution, although

each of the locations are included in the solution of at least one previous model. The
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Figure 8-6: Optimal locations for Objective #5: Minimize income segregation

chosen locations have a much more even spatial distribution than any of the previous

solutions. The South End and East Boston branches are chosen, which provide

high demand and interaction opportunities, while the three remaining branches are

distributed across the city to limit travel.

The multi-objective model finds a very balanced solution that performs reason-

ably well across all objectives. Given that models 2 through 4 all have related ob-

jectives, the multi-objective model results are closer to the optimal values for those

measures, and further from the optimal solution for the travel distance model. Nev-
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Measure Value Optimal
Value

% of
Optimal

Travel distance (mi) 11,678 5,059 231%
Workplace users 29,365 40,899 72%
Interaction opportunities 105.25 M 173.23 M 61%
Q1-Q2 interaction opportunities 8.11 M 17.53 M 46%
Deviation from population diversity 0.0205 0.0205 100%
Computation time (s) 0.7

Table 8.8: Results for Objective #5: Minimize income segregation

Figure 8-7: Optimal locations for weighted objective

ertheless, the total travel distance is reduced by 43% compared to model #2, while

the demand is reduced by only 27%. The computation time for this model is similar
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to the other quadratic objectives at 6.5 seconds.

Measure Value Optimal
Value

% of
Optimal

Travel distance (mi) 10,569 5,059 209%
Workplace users 25,678 40,899 63%
Interaction opportunities 110.68 M 173.23 M 64%
Q1-Q2 interaction opportunities 12.00 M 17.53 M 68%
Deviation from population diversity 0.0295 0.0205 144%
Computation time (s) 6.5

Table 8.9: Results for the multi-objective model

8.4.7 Pareto frontier analysis

An interesting application of the shared workplace location model for policy devel-

opment is mapping the Pareto frontier between two conflicting objectives to find the

appropriate solution for a given policy trade-off. For this example, the Pareto frontier

is mapped for the objectives to minimize total travel and maximize total demand.

Figure 8-8 demonstrates there are many possible optimal solutions depending on how

policymakers value each objective relative to one another. Even a minor shift to-

wards higher demand can increase travel quite dramatically, and vice versa, making

this trade-off a difficult political decision. The same map could be created for other

combinations of two or more objectives to facilitate the policy development process

and avoid choosing sub-optimal solutions.
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Figure 8-8: Pareto frontier for Objectives #1 (minimize travel distance) and #2
(maximize demand)

8.5 Policy implications

This area of research has numerous policy implications for many different classes

of remote work stakeholders. While it is primarily designed as an analysis tool to

inform remote work policymaking, it can also be adapted to support decision-making

by real estate providers, private shared workplace operators and large employers.

The implications for policy making are evident. This optimization framework

can be used to select locations for a network of remote working hubs that provide a

convenient compromise between working at home and working at the office. It allows

policymakers to estimate the performance of the selected locations along a variety of

social goals, and make trade-offs between competing objectives depending on political

priorities. The Pareto frontier for two or more objectives can be drawn to highlight
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optimal solutions and avoid the selection of any dominated solutions. The numerical

experiment shows that distributing shared workplaces across the urban area, with

an emphasis on high-density neighborhoods, provides a solution that balances travel

considerations with the desire for high utilization and many opportunities for social

interactions.

There are applications even for policies that do not involve the direct financing

or construction of new shared workplaces. For example, this framework could be

used to select parcels of land to be zoned for shared workplaces, or identify locations

where overly restrictive zoning has high social costs. By comparing the model so-

lutions with different data inputs that represent alternative scenarios, it could also

demonstrate how introducing new high-density housing or transportation infrastruc-

ture would affect the workplace choices of remote workers. Finally, policies such as

subsidising the use of shared workplaces, or combining shared workplace passes with

public transit tickets, could be tested by adjusting the MNL model and solving the

optimization problem.

Real estate developers and shared workplace operators are the second category

of stakeholders impacted by this research. It could certainly be a powerful tool for

choosing future private shared workplace development locations from among a set of

candidate sites, given that the framework allows profit maximization as an objective

function. Existing shared workplace locations would need to be included in any model

for determining the expected demand and profit of a new facility. The highly flexible

MNL component could be adjusted to test different design decisions for new facilities,

such as facility capacity or amenity bundles, or even pricing changes for existing

facilities. Customers could also be segmented into different groups in the model to

evaluate new products or promotions (e.g. monthly vs. weekly subscriptions).

In a sense, employers may be best suited to take advantage of this new optimiza-
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tion framework. They have considerable information about their employees and can

easily issue surveys to understand how employees would react to facility location

choices. Many large employers are considering significant changes to their real estate

portfolios, including a shift towards distributed satellite offices (also referred to as a

“hub-and-spoke” model) [318, 319]. The optimization framework can help employers

choose the right set of distributed locations to maximize the productivity and utility

of their employee base, while avoiding investment in little-used facilities. Like the

public sector, they can also evaluate the impact of different remote work policies and

incentives on the workplace choices of their employees. The public sector is also a

large employer, so if other governments follow the example of the Canadian federal

government described earlier, they may use this framework for data-driven planning

of shared workplaces for government employees.

8.6 Conclusions

Remote work is expected to remain a popular working arrangement well into the fu-

ture, but there are individual and society downsides to working exclusively at home.

Policymakers around the world are beginning to recognize that shared workplaces, a

compromise between working at home and working in the office, can help to alleviate

these issues. This paper establishes a new optimization framework for the shared

workplace location problem with five different classes of objectives that correspond

to the challenges of working at home. The specific dynamics of remote work loca-

tion choice make the optimization framework difficult to solve, however. Non-linear

workplace choice dynamics, including the option to work at home rather than a

third place, are incorporated as linear constraints using an flexible exterior simula-

tion approach. Complex social objectives are also linearized with a special family of
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constraints to improve the tightness of the linear relaxation, allowing realistic prob-

lems to be solved in a reasonable timeframe. Data from the City of Boston is used

to show the divergence in solutions across objectives and how certain social objec-

tives for shared workplaces are in conflict. A multi-objective optimization approach

provides further insights by mapping the Pareto frontier and solving the problem for

weighted combinations of the objectives to find a balanced solution.

This optimization framework provides the foundation for many future research di-

rections. First, the MNL model for workplace choice could be refined using purpose-

specific survey data with additional variables. Alternative discrete choice model

designs, such as nested logit or latent variable models could also be tested given

the flexible nature of the exterior simulation approach. Accounting for the effect of

one person’s workplace choice on another person’s workplace choice (e.g. a pair of

co-workers or friends) is another example of a future model enhancement that could

capture subtle behavioral dynamics. While the existing model framework can be

solved relatively quickly for a city-scale problem, more efficient linear formulations

or solution methods for the quadratic social objective functions could facilitate the

solution of much larger regional or national scale problems, or problems with a much

greater resolution. Second, new social objectives could be introduced. For exam-

ple, it has been hypothesized that working at home could increase carbon emissions

due to the relative energy inefficiency of many individuals working from residential

buildings rather than a single floor of a modern commercial building. A social ob-

jective function to minimize total carbon emissions, including carbon and building

emissions, would be useful in sustainable land use planning for remote work. Third,

additional decision variables could be added to the model, such as the admission

price, facility capacity, or quality of amenities. These decision variables would be

especially relevant to private shared workplace developers (i.e. co-working platforms)
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who build and operate heterogeneous facilities catering to different market segments.

Even more complex problems, such as combining the location model with a trans-

portation network design components could inform future integrated land-use and

transportation model for sustainable remote work. Finally, new experiments could

investigate the same question in other locales, or explore related remote work pol-

icy challenges. The shared workplace optimization framework could be applied to

the problem of deciding which vacant commercial buildings should be converted into

shared workplaces, or which transit stations would benefit most from transit-oriented

development with remote work amenities.
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Chapter 9

Conclusions and Recommendations

This chapter concludes the dissertation with a summary of the findings and recom-

mendations, then describes some of the limitations of the research. Finally, it offers

many opportunities for future research at the intersection of remote work and urban

transportation.

9.1 Summary

The widespread rise of remote work in the wake of the COVID-19 pandemic repre-

sents one of the largest disruptions to urban life in a generation. Travel patterns have

changed dramatically as a large segment of the population has the newfound flexi-

bility to choose where (and occasionally when) to conduct their work. Urban trans-

portation systems, largely designed to accommodate peak hour commuting from res-

idential areas to downtown business districts, have been forced to re-evaluated their

design, operations, and even their role in society. Employers, through their remote

work policies, now play an important role in the travel choices of their workforce,
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with major downstream effects on transportation systems and the urban economy.

Policymakers, faced with limited or conflicting evidence, have taken a range of differ-

ent approaches to urban remote work policy, leading to diverging outcomes for their

residents. Each of these stakeholder groups (remote workers, service providers includ-

ing transportation system operators, employers, and policymakers) has an important

role to play in determining how remote work evolves going forward. This dissertation

seeks to arm these stakeholders with a comprehensive framework for considering re-

mote work problems, detailed data on remote work-related travel behavior, and new

analytical methods for adapting urban mobility systems to the changes caused by

remote work.

There has been considerable research into remote work trends and impacts since

the onset of the COVID-19 pandemic. Yet two barriers prevent the translation of

this work into evidence-based policy. First, studies often take a narrow, discipline-

specific approach to remote work that ignores the much larger impacts of remote

work on other relevant stakeholders. Second, the lack of a comprehensive framework

to describe remote work settings can make it difficult to identify the factors con-

tributing to diverging results between seemingly similar studies. This dissertation

addresses both issues by mapping the stakeholder relationships related to remote

work, providing a common taxonomy for many remote work terms, and proposing a

conceptual framework for describing and classifying remote work studies.

Next, this dissertation presents a new, large-scale source of primary data on

remote work arrangements and travel behavior. One of the most surprising findings

is that many people are choosing to conduct work outside of their homes at nearby

third places, such as coffee shops or co-working spaces. Commuting trips to these

third places have different characteristics than traditional commutes; people leave

later in the day, are more likely to use sustainable travel modes, and travel shorter
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distances. The use of third places varies by many of the traditional categories used

in travel behavior models, such as socioeconomic status and geography, but also by

characteristics related to employment, employer policies, attitudes towards remote

work, and household amenities. These factors provide a new link between employers

and travel demand that does not exist for traditional employer workplace-based

working arrangements.

The influence of employers is just one complication that makes third place com-

muting difficult to estimate with existing travel behavior models. The mixed continuous-

discrete distribution of preferences for remote work is another challenge, as is esti-

mating the choice of destination. This dissertation shows how ZOIB regression, the

introduction of new travel behavior model variables, and mobile phone records can be

used to produce accurate models of third place trip characteristics. These techniques

allow travel demand modelers to account for third place commuting when planning

transportation infrastructure investments and evaluating remote work policies.

Third place commuting has a significant impact on carbon emissions. This disser-

tation shows how the methods described above can be used to update pre-pandemic

estimates of commuting travel across an urban area. It finds that remote work

has reduced carbon emissions from commuting travel in the Chicago area by more

than 30%. Ignoring third place commuting, however, leads to an underestimation

of commuting emissions by 16.6%. These results highlight the importance of ac-

counting for third place commuting in travel demand modeling. Using the same

analysis method, the change in commuting visits to different neighborhoods is also

estimated. Relative to 2019, visits to the downtown core have declined precipitously,

but some high-amenity neighborhoods in the inner suburbs have seen an increase in

visits due to third place commuting. If employers’ plans for remote work are realized

in the future, more visits to the downtown core and distant suburban commercial
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neighborhoods could be expected.

Given all of this new information about the travel behavior of remote workers

and the potential impact of remote work on travel demand, the obvious question is:

what should be done? Three new analytical tools are provided for adapting urban

systems to remote work with each targeting a different remote work stakeholder.

The first study imagines a new type of shared mobility service that takes advan-

tage of the spatial flexibility offered by remote work. It develops an optimization

model for matching passengers and vehicles in a ride-pooling platform where pas-

sengers have flexible destinations (e.g. “take me to a co-working space” rather than

“take me to one specific WeWork location”). The destination flexibility is shown to

enable more efficient passenger-vehicle matching arrangements, reducing overall ve-

hicle travel while simultaneously increasing profit for the platform relative to a fixed

destination service.

Public transit agencies are another important stakeholder whose ridership pat-

terns have shifted dramatically as a result of remote work. A novel, computationally

tractable method for evaluating the potential of entire transit networks to handle

changes in ridership is developed to inform future operational and strategic plan-

ning. The optimization model allows for destination flexibility on the part of transit

riders, allowing it to capture the dynamics of remote work and other discretionary

trips. A case study of the MBTA rapid transit system shows that the hub-and-spoke

topology of the network is well-suited to handling traditional commuting demand

from the periphery to downtown, but does not have the same capacity to serve a mix

of traditional commuting and decentralized commuting to third places in neighbor-

hood centers. The optimal service patterns for each scenario are also determined.

Transit service that adapts to new demand patterns is more likely to attract rid-

ership; agencies can use this new modeling framework to test alternative operating
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strategies or network designs based on capacity to handle emerging remote work

travel patterns.

The last adaptation study is aimed at land use, which is an integral part of travel

demand. Motivated by the growing need for new remote work hubs to accommodate

the rise in demand for third places, the study develops an optimal location choice

model for shared workplaces. While private co-working developers are primarily

concerned with maximizing demand and profit, public sector developers, who have

recently begun to engage in shared workplace development, have a range of social

goals. To that end, the integer programming model permits objectives related to

travel, demand, and profit, but also interaction opportunities, social segregation,

and diversity of visitors. A numerical experiment investigates the optimal selection

of Boston Public Library branches to renovate to support collaborative remote work.

The results demonstrate the variation in optimal solutions for individual objectives,

and how objectives can be combined to produce a balanced and spatially distributed

solution. This modeling framework can be used to support evidence-based shared

workplace investment that maximizes positive social outcomes.

These are still the early days of the remote work era, and there is an opportunity

to adapt mobility systems to this new reality in order to improve the quality of life

for urban residents and visitors. Bold actions, informed by strong evidence, will be

needed to adapt to the new reality of remote work-influenced travel patterns. By

providing the conceptual framework, empirical data, and analytical tools for remote

work stakeholders, this dissertation is a step toward evidence-based decision-making

for a more sustainable and vibrant urban future.
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9.2 Recommendations

The research in this dissertation was designed to provide practical policy and research

recommendations by adopting the perspective of the urban stakeholders affected by

remote work. Chapters 2 through 8 each present detailed policy recommendations

derived from the results of the individual studies. Those recommendations are syn-

thesized below for each of the important remote work stakeholder groups: academia,

transportation services, policymakers, employers, real estate services, and remote

workers.

Academia. Recommendations for academia are primarily addressed in Chapter 2.

As discussed, many existing remote work research articles, while excellent, are chal-

lenging to translate into policy. Future research projects should take advantage of

the proposed taxonomy and stakeholder to ensure that their findings consider the

broader context of remote work. To the same end, scholars should invite collabo-

rators from outside of their disciplines wherever possible for a wider perspective on

remote work issues. Researchers should also take advantage of the proposed concep-

tual framework to classify their studies and facilitate comparison with other similar

studies to isolate key similarities and differences.

Transportation services. This dissertation is predominantly focused on providing

information and adaptation tools for urban transportation service providers. The

evidence demonstrates that remote work has a deep impact on travel demand; about

30% of all worked days in the United States are now taking place remotely. Two-

thirds of these days are worked at home, thus eliminating the need to commute.

The remaining third is happening at nearby out-of-home remote work locations such

as libraries and co-working spaces. The flexibility regarding when and where to

commute has resulted in an uneven distribution of work trips across days of the
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week, and a shift towards later departure times on the days that they do occur.

Transportation services must adapt their schedules and operating patterns to

account for these new temporal and spatial patterns to ensure that they continue

to provide convenient service to commuters. Shared mobility services should adopt

flexible destinations as a means to improve the efficiency of their services, as shown

in Chapter 6. Transit agencies should use the transit capacity flexibility models

developed in Chapter 7 to evaluate the ability of their networks to accommodate these

new commuting patterns and make changes if necessary. Shifting resources towards

off-peak hours and focusing on connecting neighborhoods (rather than suburb-to-

downtown corridors) will certainly benefit remote workers, but also anyone who works

an irregular schedule or uses transit for non-downtown trips. A rise in commuting

to third places may benefit transit agencies, as people are more likely to use public

transit for third place commutes than traditional commutes. By building shared

workplaces near transit hubs, public transit agencies can make transit an even more

convenient third place commuting mode.

Policymakers At a high level, this research underscores the tremendous impact of

remote work on the functioning of urban systems. Policymakers should review the

evidence presented in Chapters 1-4 to understand how remote work affects their as-

pirations for urban mobility and urban society more broadly. As shown in Chapter 5,

policymakers must not overlook the dynamics of remote work, such as commuting

to third places, when estimating the impacts of future policies.

Another conclusion of this research is that employers have much more freedom

to influence the travel behavior of their employees than ever before. By setting the

frequency of remote work, types of hybrid work schedules, and the distribution of

office locations, a few large employers could make a measurable difference in travel

demand in an urban area. For policymakers, this opens up space for new travel
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demand management policies. One example could be incentivizing employers with

fixed hybrid schedules to offset their required in-person days as a means to spread

travel demand throughout the week. The methods described in Chapter 4 can be

used to enhance the travel demand models used to evaluate such policies.

Lastly, policymakers should consider promoting shared workplaces as a compro-

mise between the benefits of working at home (reduced commuting, more flexibility)

and the benefits of working in the office (opportunities to interact with others, less

social segregation, no need to invest in a home work environment). Governments

worldwide are considering how to build networks of shared workplaces that promote

social goals; the models presented in Chapter 8 provide one method for prioritizing

investment across potential locations. Other policy approaches, such as multi-use

zoning in residential areas and transit-oriented development with remote work hubs,

could also be effective in promoting remote work at shared workplaces.

Employers. Employers stand to benefit from this research in multiple ways. First,

this research illuminates the preferences of workers in the United States. Employers

should review these preferences and adjust their remote work policies where appro-

priate. For example, understanding that remote workers with young children, poor

home internet, and those living with roommates all have stronger preferences for

conducting remote work outside of the home might influence employers to offer sub-

sidies for the costs of working at third places. Employers can also use the findings

related to their influence on the travel behavior of employees to align their remote

work policies with their corporate sustainability goals.

It is also recommended that employers review the speculative components of

this research as inspiration to advocate for new services and policies that improve

the productivity and quality of life of their employees. Employers could adopt the

methods presented in Chapter 8 to build their own network of shared workplaces for
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employees, or to push civic leaders to establish a similar public network. Based on

the results of Chapter 5, employers might also approach shared mobility platforms

and co-working providers about creating new services that streamline travel and

workplace recommendation for their remote staff.

Real estate services. The changing nature of workplace choice identified in this

dissertation should act as a catalyst for new real estate development patterns. There

is an opportunity to capture latent demand for remote work at third places by ex-

panding the network of shared workplaces. Real estate services can use the data

on third place adoption for investment planning at an aggregate level, and the op-

timization model in Chapter 8 for targeting specific facility locations. In addition,

it is recommended that short-term workplace providers such as co-working spaces

explore future partnerships with mobility platforms to create an all-in-one mobility

and workplace recommendation service for remote workers.

Remote workers. One benefit of this research for remote workers (and other work-

ers for that matter) is to see how their own attitudes towards remote work and

travel compare to their peers and the plans of employers. It is recommended that

remote workers leverage the information provided herein to understand their role in

shaping the future of remote work. Remote workers can lobby their employers for

smart remote work policies by citing the benefits of working at third places and the

evidence that remote work reduces emissions from commuting. They can also keep

policymakers informed of opportunities to shift public transit and shared mobility

services to better accommodate the travel needs of remote workers.
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9.3 Limitations

The overall body of research in this dissertation has certain high-level limitations

related to the scope of the research, the data collected and the methods developed.

Many of the limitations described could be addressed through the future work pro-

posed in Section 9.4. The specific limitations of the methods and the data used for

the studies in each chapter are described therein.

To begin at a high level, the scope of the dissertation, while ambitious, is inten-

tionally broad. Each of the topics explored in the individual chapters is sufficiently

complex and important to support multiple dissertations. One reason for this is the

timing of publication; this dissertation was written during the three years follow-

ing the initial rise in remote work during early 2020. While remote work certainly

existed in years prior, it was not practiced on a widespread basis and therefore at-

tracted relatively limited attention from the academic community. This dissertation,

therefore, aims to fill critical gaps in evidence and methods to address the immediate

challenges faced by a range of remote work stakeholders. Given the severe disrup-

tion presented by the rise in remote work, this broader approach was anticipated to

have the greatest potential for meaningful impact in the short term. An alternative

approach would have been to investigate all of the implications of remote work for a

single stakeholder (e.g. public transit agencies) and develop comprehensive evidence

to support proposed adaptation strategies. This dissertation, through its concep-

tual, empirical, and methodological contributions, is intended to provide a strong

foundation for exactly those types of in-depth research projects in the future.

Another limitation of this research is the geographic scope of the data collection

and the case studies. The SWAA, highlighted in Chapter 3, exclusively collects

data from remote workers residing in the United States, and the case studies in
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later chapters are largely based on large American cities (e.g. Chicago, Boston,

New York City). The methods are designed to be applicable in any geographic

context, however. Moreover, the SWAA survey methodology has been applied to a

global survey: the Global Survey of Working Arrangements, or “G-SWA” [320]. It

would be very interesting for future researchers to conduct the same analysis in this

dissertation for other countries and compare them to the results herein, as many

countries have not seen the same level of remote work uptake as the United States.

Ultimately, defining the scope of a dissertation involves many trade-offs, and it was

determined that the work required to collect and analyze data for other geographies

would undermine the ability to deliver on the research objectives.

By definition, this research focuses entirely on the behavior of remote workers

and the implications of their behavior for urban systems. As a result, it entirely

ignores people who do not have the luxury of being able to work remotely. It is

low-income workers, including many in critical occupations such as transportation

and health care, who are most likely to work jobs that cannot be done remotely,

as discussed in Chapter 3. This dissertation therefore intentionally avoids making

recommendations that would exclusively benefit remote workers. The experiments

herein find that adapting transportation and land use systems to widespread remote

work have benefits for society writ large by reducing many of the negative exter-

nalities of commuting. Furthermore, adapting transportation systems for remote

workers can improve service for a broad group of people who do not work traditional

schedules, such as shift workers, gig workers, retirees, and caregivers. Readers are

referred to [321] for a discussion of the equity impacts of remote work and to [322]

for recommendations to expand access to remote work across socioeconomic groups.

One shortcoming of this research is that it does not address one of the significant

challenges of remote work for urban mobility: funding. The reduction in commuting
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has produced a sharp drop in fare collections for urban transit agencies and even

some toll roads. These issues are discussed in Chapter 2, but the focus of the dis-

sertation is to develop tools and evidence for operational and strategic planning,

rather than opportunities for new funding sources. Many of the recommendations

provided herein would be likely to increase revenue for transit agencies (e.g. building

shared workplaces near transit hubs and offering discounted passes for occasional

but regular riders), while others may require additional capital or operating funds to

implement (e.g. expanding off-peak service). In the short to medium term, however,

fare revenue for public transit agencies is unlikely to recover to pre-pandemic levels

even if these recommendations are adopted, and therefore addressing the funding gap

remains largely in the realm of policymaking. [323] and [324] are among the many

excellent articles about the need for alternative funding sources for public transit

in the United States, and policy-oriented research on this topic is left for future

research.

Lastly, this dissertation is aimed at addressing issues facing urban areas. Chap-

ter 3 shows that remote work is most prevalent in urban areas, and the operational

challenges faced by large urban mobility systems are generally much larger than those

in suburban and rural areas. Nevertheless, remote work has increased substantially

in suburban and rural areas as well. In many cases, remote work is seen as an op-

portunity for economic growth in exurban and rural areas [325, 227], as fully remote

workers may be enticed to move out of cities if they no longer have to commute to

an urban office. When taken to the extreme, the residential relocation trend has

created new issues for certain small towns that experienced a remote work-related

population boom [326]. These issues are quite different from the challenges faced

in urban settings, where overall travel has generally declined due to remote work,

or shifted to new patterns. New research is needed to understand and address the
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remote work issues that are specific to rural and suburban areas.

9.4 Future Work

This dissertation is simply one step toward a comprehensive body of research around

remote work and urban mobility. There remain many unexplored research areas

connecting the two topics. As discussed in Chapter 2, an interdisciplinary approach

to this research is essential for evidence-based policy. The four categories of stake-

holders identified in Chapter 2 all stand to benefit from further research. Employers,

workplace providers, and governments are currently operating with considerable un-

certainty about the future of work and would benefit from an optimization framework

that can be used for data-driven decision-making. For example, employers could in-

corporate employee preferences, home locations, and productivity functions when

designing remote work policies and incentives. Workplace operators can leverage

trip record data for locating and sizing new facilities, and for setting subscription

prices. Governments would benefit from a strategic approach to planning remote

work land uses to spur economic growth in struggling neighborhoods or to mitigate

congestion within the transportation network. Each of these applications requires a

robust source of data as well as new methodologies that can incorporate remote work

dynamics. For that reason, the remote work research needs described in this section

are categorized into two important subsets: empirical research and methodologi-

cal research. The section concludes with detailed examples of two future research

projects.
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9.4.1 Empirical research

While the long-term trend towards remote work has yet to be observed due to ongoing

concern about the COVID-19 pandemic and related economic restrictions, it is not

too early to begin to collect empirical evidence. Empirical research needs can be

further categorized into three major themes: 1) Changes in individual behavior, 2)

Employer policies, and 3) Remote work infrastructure. The empirical research goals

are summarized by theme at the end of this subsection.

Surveys of individual behavior have been conducted since the onset of the COVID-

19 pandemic, as outlined in Chapter 2, including many that ask about future inten-

tions. Unfortunately, the methodologies of these surveys are inconsistent, making

it difficult to compare them against one another. The first empirical research goal

should be to develop a standardized set of survey questions that would allow com-

parison over time, between different geographic areas and between socioeconomic

groups.

Second, in order to predict long-term trends, surveys of both employers and

workers should be continued on a regular basis. Typical sources of socioeconomic

and travel behavior data, such as the American Community Survey and the National

Household Travel Survey, are conducted infrequently and thus not suitable for un-

derstanding the rapidly changing dynamics of remote work. Attitudes towards the

pandemic are in flux due to the emergence of virus variants on one hand and con-

tinued vaccination progress on the other, therefore attitudes towards remote work

might also evolve. Panel studies or updated versions of previous studies would allow

researchers to study how these attitudes have changed over time and to associate

these changes with the dynamics of the pandemic. The results could also provide

insight into the temporal evolution of general behavioral trends during public health
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crises.

Next, empirical studies should expand their scope beyond the immediate ques-

tions around remote work to include detailed questions about preferred working ar-

rangements, housing choices, commuting, and non-work travel. Except for working

arrangements, these themes have been included in a handful of COVID-19 era sur-

veys, but rarely in sufficient detail to support modeling efforts or policy development.

Eliciting the factors that influence the decision of remote workers to move home lo-

cations, to start cycling to work, or to switch to a different grocery store, will have

important implications for transportation services, real estate markets, and public

policy. The extent to which employer-provided perks such as free on-site parking or

transit passes have changed after the pandemic, and how those perks affect remote

work decisions, is another potential research topic.

Detailed surveys of preferences for different work arrangements remain limited.

Determining whether the large cohort of remote workers prefers remote work to

take place at home alone, at a café with friends, or at a co-working space with

colleagues is one of the most critical research needs in this area. Well-designed stated

choice surveys of remote workers would allow researchers to infer the willingness-

to-pay and willingness-to-travel measures for different workplaces and associates.

Comprehensive studies of these preferences, contributing factors, and population

heterogeneity could be used to inform transportation planning, employer policies,

and investment decisions, among many other decisions.

Stated choice surveys are helpful, especially when forecasting future trends, but

there are also opportunities to collect and analyze revealed-preference data related

to remote work. Established methods for tracing mobility patterns, such as mo-

bile phone traces and transit smartcards, can and have been used to study changes

in demand for travel during the COVID-19 pandemic [327]. Datasets that allow
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for longitudinal comparison of individuals before and after COVID-19 restrictions

are especially valuable, as they permit quantification of the spatial and temporal

changes in work activities. New methods could be applied to revealed-choice data,

such as credit card transactions and mobility patterns, to estimate demand functions

for different workplace types. Machine learning and statistical inference techniques

might leverage these datasets to identify new patterns of behavior related to re-

mote work. This information would help transit agencies and other transportation

providers adapt to changing demand patterns.

One application of this preference data is in cost-benefit analysis for transporta-

tion projects. A greater prevalence of remote workers might change the determi-

nation for new transit services, bike-sharing programs, or road projects. Previous

calculations would have considered a low or moderate amount of induced demand for

new transit projects as a result of travelers switching from other modes or changes

in destination for some discretionary trips. The destinations of commuting trips,

however, are largely considered to be fixed [328]. Collecting empirical data about

workplace preferences allows planners to model the changes in work locations that

result from improvements to the transportation network, and would ultimately affect

which projects are proposed and implemented.

Turning to the employer policy theme, the degree to which employers share the

preferences of their employees, or have countervailing preferences is perhaps more

important, as employers ultimately determine remote work policies. Much like mo-

bility patterns, recent research around employee and firm productivity has focused

on the period at the beginning of the COVID-19 pandemic, when most remote work

was conducted at home due to mandatory restrictions [112, 113]. Given that a

much larger share of the population is expected to engage in remote work in the

future, it is important to understand how different work arrangements affect individ-
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ual and organizational outcomes. Rigorous case studies of employers who adopted

widespread remote work or distributed satellite offices before the pandemic, their

organizational structures, remote work policies, and communication practices could

be informative. Furthermore, the actions and stated intentions of major employers

during the COVID-19 period related to work site relocation, remote work policies

and organizational restructuring should be cataloged.

Finally, there is the issue of creating and curating new sets of data that can

facilitate remote work travel demand models. One important research need is the

location, capacity, and occupancy of potential workplaces for remote work within

different urban areas. This would include each of the facility types described in

Chapter 2, such as cafés, libraries, and co-working spaces. Previous studies of re-

mote work destinations, such as Ge et al. [86], have made strong assumptions about

available workplaces due to a lack of ground truth data. Going forward, an accurate

representation of availability will be necessary to generate actionable insights.

Table 9.1 summarizes the empirical research needs described above:

9.4.2 Methodological research

The collection of new empirical data will have a limited impact if the dynamics of

remote work cannot be captured by analytical models. These models should address

the need for long-term strategic planning by mobility providers, employers, and work-

place providers, but also operational decisions such as employee coordination and

transit schedules. This may involve adding new complexities to existing methods

to reflect the dynamics introduced by remote work, or integration of multiple exist-

ing methods or models from different disciplines. Finally, two of the research needs

call for entirely new methods to quantify important remote work dynamics that are
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Theme Research topic

Individual behavior

Establish a set of standard questions for future remote work
surveys and continue collecting data from existing surveys

Expand surveys to include comprehensive questions about
changes in lifestyle brought about by an increase in remote work

Collect or synthesize revealed-preference data to study actual
changes in mobility patterns

Focus surveys on preferences for different remote work arrange-
ments

Employer policies

Survey employers across industries and compare the difference
in remote work preferences between employers and staff

Track aggregate trends in workplace relocation, remote work
policies, and organizational restructuring

Review the practices and outcomes of organizations who
adopted extensive remote work before March 2020

Infrastructure Create new datasets identifying the location and capacity of
available remote workplaces

Table 9.1: Summary of empirical research needs

known to exist but difficult to analyze effectively. Similar to the empirical research,

these needs have been organized into three categories: 1) Travel demand modeling,

2) Supply adaptation, and 3) Land use and public policy. The travel demand mod-

eling tasks will benefit from the individual and employer-focused empirical research

described in the previous section. The supply adaptation research needs are then

built on top of the demand modeling improvements, offering a response that caters

to the needs of remote workers. Lastly, the land use and public policy research needs

incorporate all three themes of empirical research, including remote work infrastruc-

ture.
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First, associate dependencies imply a joint decision between multiple individu-

als, a scenario that has been historically difficult to encode into the discrete choice

modeling framework. The remote work location choice of one colleague could af-

fect the decision of another, and so on; these effects should be captured within the

choice model. There have been notable efforts to include a single decision made

by a multi-person household [329], or decisions where social effects are incorporated

[330], but models of day-to-day decision-making with correlated outcomes are lim-

ited (for an example, see Zemo and Termansen [331]). These efforts could involve

improving the traditional econometric models or perhaps creating new choice models

altogether. For example, when a group of colleagues with remote work is given the

freedom to choose a time and place for a collaborative meeting, the negotiation be-

tween alternative destinations could be modeled as a set of strategic choices between

decision-makers, thus introducing game theory concepts into destination choice mod-

els. Machine learning for travel behavior modeling has been growing in popularity;

such techniques may prove more suitable for the collective choice between remote

work arrangements. Moreover, work arrangements are likely to be influenced by pre-

vious choices. Choice models should incorporate memory of previous decisions, and

the competing desires between exploration of new possibilities and exploiting known

work arrangements.

Modeling the choice of working arrangements necessarily includes a utility func-

tion for different destinations; empirical research described in the previous section

can help to calibrate the function parameters. This is one example of adding new

complexity to an existing method.

Many classical travel demand models [332, 333] do not include occupancy in

the destination utility function, or require that destination utility is a monotonic

function of occupancy to guarantee that a solution exists and that it is unique. Des-
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tination choices, including workplace choices, are often non-monotonic, however. For

example, the utility gained from working at a co-working space might increase with

occupancy, but only up to a certain threshold, after which utility begins to decrease

rapidly due to crowding and noise. Other, more complex functions are certainly

possible. Generalized travel demand models that accommodate such functions are

therefore necessary for accurate estimates of transportation outcomes in the future

of work. Collaboration between econometricians, behavioral psychologists, and ac-

tivity modelers is needed to develop workplace choice functions that can be used to

estimate the effects of new remote work policies.

Advances in the modeling of remote work arrangements and destination util-

ity could be leveraged for a new application: recommendation engines for remote

workers. Some of the stakeholder partnerships identified in Chapter 2 involve col-

laboration between mobility platforms and workplace providers to sell integrated

services to workers or their employers. Imagine, for example, a platform that com-

bines ride-hailing services and co-working spaces to offer combined transportation

and workplace solutions for remote workers who prefer to work outside of the home.

Methods for identifying remote workers who would benefit from new services, and for

learning how preferences change over time, would help these partnerships recommend

service bundles to prospective users.

The research needs described above are largely related to demand modeling, but

supply models must also be adapted for remote work. One of the biggest concerns

around remote work is the overall uncertainty. As described in Chapter 2, there is

much speculation around remote work trends, and the majority of studies simply

estimate remote work in the near future, rather than five or ten years hence. Across

all transportation modes, one critical research need is supply optimization models

that allow for uncertainty and future changes in the quantity, location, and timing
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of travel demand. There are several methodological approaches that incorporate

uncertain parameters, including stochastic optimization and robust optimization,

which could be applied to transportation planning problems. For example, transit

network design models should be capable of including the possibility that remote

work grows to 40% of worked hours in the long run, as well as the possibility that it

continues to account for less than 10% of worked hours. These new techniques should

then find solutions that work well in each of the possible scenarios, or solutions that

are inherently flexible, resilient, and adaptable to changing trends.

Much like ride-sharing, transit assignment modeling has typically assumed fixed

destinations for most transit trips (e.g., Oliker and Bekhor [334]). Remote workers,

on the other hand, may adjust their destinations each day based on the availability

and quality of transit service, or even due to new information received en route, such

as the presence of downstream incidents. New transit assignment models are needed

that can capture these dynamics, including the effect of real-time information, with

tractable formulations to support transit planning applications.

Moreover, transit networks and schedules are generally designed around the sta-

ble spatiotemporal demand produced by fixed commuting patterns. New trends may

emerge as people become more comfortable with remote work; one might imagine

that more remote work will occur on Mondays and Fridays than mid-week, but that

people are more likely to work from non-home locations on Fridays than Mondays

to pursue social activities after work. These trends have not been a major issue

for transit agencies due to limited remote work before March 2020 but could create

significant disparities in aggregate travel demand between weekdays. Adjusting to

these patterns could require the creation of different transit schedules or even route

patterns for each weekday, which is not common practice today. Creating these

individual timetables will require new methods for rapid data collection and sched-
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ule optimization, as well as research into the dissemination and communication of

complex timetables to the public and transit operators. Schedule optimization mod-

els could also be updated to endogenize the remote work policies of major regional

employers, which have a substantial effect on the demand for public transit.

Finally, there are remote work research needs in fields related to transportation

planning, such as organizational behavior and land use planning. Practitioners in

both fields, like those in transportation, are responding to rapidly changing condi-

tions with a general lack of evidence and information. Employers are currently tasked

with setting remote work policies for the post-pandemic period, despite considerable

uncertainty around how different policies will affect performance, morale, and reten-

tion. Methodological innovations that can provide an accurate link between these

policies and their organizational outcomes are sorely needed; some may even include

transportation components.

Productivity modeling presents an opportunity for the development of entirely

new methods to capture remote work dynamics. First, detailed methods for identi-

fying and predicting the effects of different remote work arrangements on attitudes

such as trust between colleagues and self-identification with a career or employer,

and relate these attitudes to organizational outcomes (e.g. productivity, retention).

Second, “knowledge spillover” is an economic benefit that arises from interactions

and discussions between people, even if those people are in different industries or

professions [335, 336]. These benefits have been observed at a macro scale, but it is

difficult to measure the conditions or policies that affect knowledge spillover when

the interactions are often spontaneous and their effects can take some time to mate-

rialize. As employers evaluate different remote work policies, such as leasing space in

a co-working environment or incentivizing employees to choose collaborative remote

work arrangements, it is critical to model the productivity benefits of these policies
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that result from interacting with others. Adapting methods from network science to

this problem is one promising direction of research.

Land use planners are in a similar position to large employers. Knowledge

spillover can benefit the local economy, so designing policy and land use to encour-

age interactions between individuals should be prioritized, but new methods will be

necessary to do so. There is little consensus on how remote work will change the

demand for different land uses, including infrastructure, in the long term. Improved

urban economic models that allow for new remote work-oriented land uses, travel

patterns, and the impact on agglomeration effects should be developed to guide fu-

ture decision-making.

Table 9.2 summarizes the methodological research recommendations:

9.4.3 Highlighted future research topics

This section describes two important areas of research at the intersection of remote

work and urban mobility in greater detail than the projects listed above, with the

hope of inspiring investigation by researchers in the future. The first is understanding

the broader CO2 impacts of remote work, specifically within the transportation and

buildings sectors.

Impacts of remote work on overall urban CO2 emissions

As discussed in Chapter 2, there has been substantial debate around the overall

impact of remote work on carbon emissions relative to the more traditional employer

premises-based work [150]. On one hand, remote work eliminates the need to travel,

thus reducing the transportation-related emissions from commuting (see Chapter 4).

Yet people who work at home still engage in leisure and household maintenance
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Theme Research topic

Travel demand

Incorporate correlation and negotiation between the destina-
tion choices of individuals within discrete choice-based travel
demand models

Expand the exploration-exploitation trade-off for destination
choice models to include the choice of workplace

Develop tractable travel demand models that permit non-
monotonic destination utility functions

Explore new methods for synthesizing mobility and location
choices in order to support a recommendation service for remote
workers

Supply adaptation

Build supply optimization models that can handle uncertainty
in remote work trends

Create optimal passenger-vehicle matching algorithms that can
capture associate, geographic, and facility dependencies

Propose new transit and multi-modal network design and
scheduling problems that involve irregular and flexible commut-
ing patterns

Land use & policy

Build dependencies into regional planning models to predict
how new zoning regulations or developments will affect location
choices and commuting patterns

Develop new methods for modeling the impact of remote work
arrangements on knowledge spillover

Create models for individual and firm productivity in a remote
work environment with dependencies, enabling evidence-based
employer policies

Table 9.2: Summary of methodological research needs

activities, and the evidence of overall reductions in personal travel due to remote

work is mixed and highly variable (e.g. 70, 76). Moreover, commercial buildings are
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generally more energy efficient than residential buildings, so a group of colleagues all

working at their own homes is likely to increase building-related carbon emissions

relative to the same colleagues working in a modern office building. Like travel,

this is also highly context-dependent, as energy use depends on several factors, such

as building age, material, outdoor temperature, other building occupants, and so

on. [337] provides an in-depth exploration of the different mechanisms by which

remote work affects carbon emissions. As a result of these complications and mixed

findings, the overall CO2 impact of remote work remains relatively uncertain despite

the obvious and important policy implications.

Recently, a combination of rich new data sources has emerged that may shed light

on this issue at an aggregate level. Following a remarkable data collection effort, Huo

et al. [133] has published near real-time carbon emissions data, broken out by sector,

for 1500 cities across the world. The sectors include ground transportation and

residential buildings, allowing for a detailed investigation of the types of emissions

that might be expected to change as a result of increased remote work. The incredible

temporal resolution of the data permits tracking of trends over time and comparing

them to the aggregate measures of remote work published by mobile technology

companies (see Finazzi [338]). Both the emissions data and the remote work data

span from before the onset of the COVID-19 pandemic well into 2022, a period during

which commuting and general mobility varied significantly.

The massive spatial extent of the data makes it possible to disentangle the many

possible confounding and contributing factors. For example, one might expect that

remote work has a weaker effect on residential building emissions in cities with mod-

erate temperatures, as people working at home would need less heating and air

conditioning. New residential buildings tend to be more energy efficient, so a sim-

ilar trend might be seen in cities with newer housing. Conversely, cities in which
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driving is the dominant mode share for commuting might see a stronger relationship

between remote work and carbon emissions, as fewer commutes would have an out-

sized impact on emissions from ground transportation. Collecting data on buildings,

weather, demographics, industry mix, and transportation across cities would provide

powerful evidence that could be used to inform future urban policies.

This empirical research remains in the conceptual stage, however, there are many

promising opportunities to quantify the effect of remote work on carbon emissions.

An initial step could be straightforward statistical analyses, such as linear regression,

of the longitudinal data on emissions and remote work by city. Additional city-level

variables could then be introduced to isolate the specific effects of the built envi-

ronment, atmospheric conditions, and population demographics. Machine learning

techniques could be useful to identify non-linear or unexpected relationships. Luckily

reverse causality is unlikely to be an issue in this analysis, as no one would be ex-

pected to change their remote work behavior in response to urban area-level changes

in carbon emissions.

The expected outcome of this research project would be a prediction model that

could determine the expected change in carbon emissions for a given shift in the level

of remote work. The model would incorporate all of the relevant city-level variables,

ensuring applicability to a wide range of cities across the globe. Such a model could

help to inform data-driven policy making around remote work, such as incentives to

encourage remote working during months with moderate temperatures, or targeted

investment in sustainable transportation infrastructure for cities with inefficient res-

idential buildings. It could also provide insights for an even more ambitious research

project: modeling the emissions consequences of employer remote work policies.
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Connecting employer remote work policies to societal outcomes

Another logical extension of the research agenda contained in this dissertation is to

evaluate the impacts of employer remote work policies in a similar manner to the

evaluation of shared workplaces in Chapter 8. While the future research project

described is concerned with macro-level emissions effects, this project would investi-

gate the environmental, economic, and social trade-offs between the various remote

work policies that an employer might choose. These policies could include number of

remote work days allowed, fixed vs. flexible hybrid schedules, hub-and-spoke office

models, or various remote work-related incentive programs. Evaluation criteria could

be a combination of carbon emissions, employee productivity, employee well-being,

real estate costs, interactions within and across teams, and urban retail spending.

If fruitful, this area of research could be expected to garner significant interest

from the public and private sector, and may have the potential for commercialization.

There would certainly be strong interest in estimating the productivity impacts of

any proposed changes to a remote work policy or real estate portfolio. Furthermore,

reducing corporate carbon emissions is a boon for the environment, but also for cor-

porate bottom lines. There remains a strong market for investment products with a

commitment to Environment, Social, and Governance (ESG) factors, giving public

companies an incentive to improve the sustainability of their operations. Depending

on the jurisdiction, corporations may also be able to take credit for emissions reduc-

tions as part of a carbon tax or cap-and-trade system if the emissions reduction can

be verified.

Building on the previous project, the initial steps of this research would be to

build a model of individual carbon emissions, productivity, and well-being for each

potential workplace (including shared workplaces). There will be a trade-off between
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the accuracy of the model and the amount of data needed, but it could be possible to

provide upper and lower bounds rather than exact figures. Then, a predictive model

of workplace choice should be developed using the SWAA data or perhaps more

detailed primary data sources. This predictive model should account for changes in

behavior due to the type of hybrid schedule or the availability of remote work-related

incentive programs. The outcome of the model would be an estimated distribution

of workplace choices for each employee under each alternative remote work policy.

Then the performance along each of the evaluation criteria can be computed and the

scenarios can be compared against each other.

This research requires both empirical and methodological innovation and would

benefit from collaboration between disciplines. New training and validation data

will be needed to develop and evaluate the prediction models. Connecting individual

and group workplace decisions to productivity outcomes has long been a significant

challenge that would benefit from novel methodological approaches and measure-

ment techniques. The SWAA survey provides estimates of self-reported productivity

changes for different remote working arrangements, and there have been some esti-

mates of productivity changes in a very narrow sense (e.g. lines of code written). Like

the previous project, machine learning techniques may provide the breakthroughs

needed to model these dynamics on a broader level, given their complexity. Network

science methods might be useful in understanding group decision-making and the

effect of group decisions on well-being and productivity in a work setting. Collab-

orations between organization behavior theorists and mathematicians or computer

scientists could be effective in developing new model structures with greater accuracy.

The expected outcome of this research project would be a practical tool for large

organizations to use for data-driven remote work policy. As mentioned, it may

also allow them to collect financial rewards when their decisions have positive social
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externalities, depending on the government programs in their jurisdiction. If the

results are sufficiently accurate, this research project could be expected to steer

corporate remote work policy in a more productive and sustainable direction with

benefits for all of society.
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Appendix A

Remote work trends, plans and

preferences (Chapter 3)

This section presents supplementary results from the SWAA related to current remote

work trends, employee preferences for remote work in the future and employer plans

for remote work in the future.

A.1 Current remote work shares

First, the observed trends in remote work. The results are based on a question asking

respondents what percent of paid full days in the past week were conducted remotely.

Responses for people who were not employed at the time of the survey are excluded.

Remote work shares by demographic group are shown in Figure A-1. Consistent

with previous studies, the SWAA finds that younger people, men, and those with

higher incomes and education generally engage in more remote work than the average.

Current remote work shares by household characteristic are shown in Figure A-2.
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All: May 2020 - Jan 2023, N = 108,804.

Figure A-1: Current remote work share by demographic group

Urban dwellers are much more likely to be working remotely. There is significant

variation by census division, with Mid-Atlantic, South Atlantic, Mountain and Pa-

cific engaged in the highest amount of remote work. Remote work shares are also

differentiated by children’s age and internet quality in an intuitive sense. Those

without a home office are actually more likely to prefer remote work, but that trend

is thought to be a result of home offices being correlated with other characteristics

such as age and home location.

Current remote work shares by employment characteristics are shown in Figure A-

3. Team size and number of hours worked both appear to have higher remote work

shares among people with the lowest and highest response values. There is limited

variation in current remote work by employer size.

Current remote work shares by job task characteristics are shown in Figure A-4.
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(a): Aug 2020 - Jan 2023, N = 100,572; (b): May 2020 - Jan 2023, N = 108,801;
(c): Jul 2020 - Oct 2022, N = 91,809; (d): Jul 2020 - Jan 2023, N = 101,045; (e):
May 2020 - Dec 2021, N = 39,873; (f): May 2020 - Jan 2023, N = 65,705.

Figure A-2: Current remote work share by household characteristics

As expected, a general trend can be observed that people who use a computer less

often and people who spend more time in meetings or engaged in collaborative tasks

are less likely to conduct their work remotely.

Current remote work shares by remote work policy types are shown in Figure A-5.

People who get to set their own remote work schedule are generally conducting more
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(a): Aug 2021 - Jan 2023, N = 65,730; (b): Sep 2021 - Oct 2021, N = 6,028; (c):
Feb 2021 - Jan 2023, N = 89,886; (d): Jul 2020 - Jan 2023, N = 105,873.

Figure A-3: Current remote work share by employment characteristics

remote work, as are those who choose not to follow their employer’s guidelines for

number of remote work days. The difference in current remote work share between

those whose employers set a common remote work schedule and those whose remote

work schedule varies is relatively small.

Current remote work shares by attitudes towards remote work coordination with

colleagues are shown in Figure A-6. Those who are less interested in coordination

across all four questions generally conduct more remote work than those who value

coordination.

Current remote work shares by attitudes towards remote work more generally

are shown in Figure A-7. Those who find remote work to increase their effectiveness

or less stressful are broadly more likely to be conducting higher levels of remote
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(a): Apr 2022 - Sep 2022, N = 22,804; (b): Sep 2021 - Oct 2021, N = 6,659; (c):
May 2022 - Jun 2022, N = 7,416; (d): Mar 2022 - Apr 2022, N = 5,780.

Figure A-4: Current remote work share by task characteristics

work. Similarly, people who think remote work increases their chances of promotion

have higher levels of remote work. Results for the survey question about whether

respondents are willing to work harder than expected to help their organization

succeed are somewhat mixed. As with all questions, the effects are likely to be bi-

directional, so those who are allowed to do more remote work may be perceive the

additional remote work as a personal benefit and therefore have a stronger positive

attitude towards their employer.

Current remote work shares by the perceived benefits of remote work are shown

in Figure A-8. There is very little variation among response groups with respect to

current shares of remote work. Greater variation is observed with respect to remote

work preferences which are presented in the next section.
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(a): Jul 2021 - Jan 2022, N = 2,896; (b): May 2022 - Nov 2022, N = 29,657; (c):
Jan 2022 - Sep 2022, N = 6,681; (d): Oct 2021 - Sep 2022, N = 10,064.

Figure A-5: Current remote work share by remote work policy

Finally, current remote work shares by life priorities are shown in Figure A-9.

Interestingly, those who value leisure and friends highest and lowest are participating

in the most amount of remote work. A high value of work and low value of family are

both positively associated with additional remote work, which is somewhat counter-

intuitive.

A.2 Preferred remote work shares

Second, the employee preferences for remote work are presented. The results are

based on a question asking for respondents’ preferences for remote work in future,

assuming remote work did not affect their pay.
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(a): Feb 2022, N = 2,627; (b): Same as (a); (c): Oct 2021 - Sep 2022, N = 7,416;
(d): Oct 2021 - Sep 2022, N = 7,416.

Figure A-6: Current remote work share by attitudes towards coordinating with
colleagues

Remote work preferences by demographic group are shown in Figure A-10. Age,

income and education largely track with observed remote work shares. Men prefer

less remote work than women, despite conducting remote work more often in their

current positions.

Remote work preferences by household characteristic are shown in Figure A-11.

Preferences by home location type and census division are quite even. The presence of

children or other adults in the home also does not seem to be associated with different

preferences for remote work. Internet quality, however, is somewhat correlated with

higher preferences.

Remote work preferences by employment characteristics are shown in Figure A-

12. Team size and number of hours worked have less variation with respect to
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(a): Jul 2020 - Jan 2023, N = 76,685 (b): Oct 2021, N = 2,622; (c): May 2021 -
Aug 2022, N = 5,641; (d): Jul 2022, N = 2,743.

Figure A-7: Current remote work share by attitudes towards remote work

preferences than the observed remote work shares shown in Figure A-3. Employees

of large companies and those who are self-employed or gig workers are more likely to

prefer high levels of remote work.

Remote work preferences by job task characteristics are shown in Figure A-13.

Percentage of time using the computer and percentage of tasks that can be done

remotely appear to have a stronger correlation with remote work preferences than

percentage of work time spent in meetings or on collaborative tasks. The average

person who works 100% of the time on a computer and all of whose tasks can be

done remotely prefers about 60% remote work, which is high relative to other groups

but still includes a substantial amount of in-person work.

Remote work preferences by remote work policy types are shown in Figure A-14.
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All: Feb 2022 - Sep 2022, N = 24,685.

Figure A-8: Current remote work share by perceived benefits of remote work

People who prefer higher levels of remote work are those who set their own remote

work schedule and those who do not follow their employer’s guidelines for remote

work. Working the same in-person days as one’s boss is associated with slightly

greater preferences for remote work, suggesting that face-to-face encounters during

in-person days allows people to feel more comfortable with additional remote work

time.

Remote work preferences by attitudes towards remote work coordination with

colleagues are shown in Figure A-15. There is a substantial difference in preferences

between those who prefer to coordinate with their colleagues and those who do not (or

those who do not perceive any difference). This result is intuitive and highlights how

attitudes and employment factors are now important to consider when estimating

travel preferences.
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All: Jul 2022, N = 2,636.

Figure A-9: Current remote work share by life priorities

Remote work preferences by attitudes towards remote work more generally are

shown in Figure A-16. Unsurprisingly, those who find remote work to increase their

effectiveness or less stressful prefer more remote work. Remote work preferences in

relation to the question about the degree to which remote work affects chances of a

promotion have a bi-modal distribution. People who expect remote work to increase

their chances of a promotion have an understandable preference for higher levels of

remote work. The second peak is those who expect that remote work lowers their

chance of a promotion by 30 to 50 percent, but prefer remote work regardless. That

peak might also be reflective of the dynamics shown by the “disagree” respondents

in Figure A-16(d), who prefer remote work at higher levels and are not particularly

interested in working harder in order for their organization to succeed.

Remote work preferences by the perceived benefits of remote work are shown in
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All: May 2020 - Jan 2023, N = 139,465.

Figure A-10: Current remote work share by demographic group

Figure A-17. People who enjoy remote work due to the commuting and schedule

flexibility benefits are actually less likely to prefer remote work. Those who enjoy

the social benefits of in-person work prefer slightly less remote work than those who

do not.

Finally, preferred remote work shares by life priorities are shown in Figure A-18.

Unlike the observed remote work share results shown in Figure A-9, preferences are

relatively constant across each of the life priority questions. This is somewhat of a

surprising result that suggest remote work is not widely perceived as a means towards

fulfilling any of the life priorities presented in the survey.
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(a): Aug 2021 - Jan 2023, N = 129,138; (b): May 2020 - Jan 2023, N = 139,460;
(c): Jul 2020 - Oct 2022, N = 117,719; (d): Jul 2020 - Jan 2023, N = 129,405; (e):
May 2020 - Dec 2021, N = 47,903; (f): May 2020 - Jan 2023, N = 84,336.

Figure A-11: Current remote work share by household characteristics

A.3 Employer planned remote work shares

Lastly, the survey data allows exploration of the employee’s perceptions of their

employer’s plans for remote work in the future. The aggregate results are generally

lower than the results for preferences, confirming that there is a gap between employer

plans for remote work and employee preferences.
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(a): Aug 2021 - Jan 2023, N = 69,436; (b): Sep 2021 - Oct 2021, N = 6,439; (c):
Feb 2021 - Jan 2023, N = 96,001; (d): Jul 2020 - Jan 2023, N = 106,513.

Figure A-12: Current remote work share by employment characteristics

Remote work plans by demographic group are shown in Figure A-19. The trends

are similar to the current remote work share results in Figure A-1, albeit at a lower

overall level of remote work than currently worked. People in the lowest income

categories, those with a high school education or less, and people aged 50 and above

expect their employers to allow them to work remotely for 20% of their hours on

average, equivalent to one day per week for a typical full time job.

Employer planned remote work shares by household characteristic are shown in

Figure A-20. Home location type and census division appear to have a stronger

association with employer plans than with employee preferences. The availability of

a home office and the presence of other adults in the household do not appear to

be correlated with employer plans for remote work, but people with young children
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(a): Apr 2022 - Sep 2022, N = 24,157; (b): Sep 2021 - Oct 2021, N = 7,117; (c):
May 2022 - Jun 2022, N = 8,199; (d): Mar 2022 - Apr 2022, N = 6,323.

Figure A-13: Current remote work share by task characteristics

expect to be granted more remote work than those who have older children or no

children at all.

Employer planned remote work shares by employment characteristics are shown

in Figure A-21. People in very large teams appear to expect higher remote work plans

than those with medium-sized teams. Interestingly, people who work relatively few

hours or very many hours also expect to be granted more remote work by their

employers than those who work 40 to 60 hours per week. There is limited variation

in planned remote work by employer size, with medium-sized employers expected to

offer more remote work than very large or small employers.

Employer planned remote work shares by job task characteristics are shown in

Figure A-22. Interestingly, the people whose employers are planning the highest
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(a): Jul 2021 - Jan 2022, N = 3,253; (b): May 2022 - Nov 2022, N = 29,657; (c):
Jan 2022 - Sep 2022, N = 6,963; (d): Oct 2021 - Sep 2022, N = 10,673.

Figure A-14: Current remote work share by remote work policy

levels of remote work are those whose jobs involve meetings and collaborative tasks

60% of the time. Employer plans also appear to change little for people for whom

10% to 70% percent of tasks cannot be done remotely, but plans are quite low above

the 70% threshold.

Employer planned remote work shares by remote work policy types are shown

in Figure A-23. It seems reasonable that people who get to set their own remote

work schedule are expecting to be afforded greater levels of remote work. Remote

workers who work the same in-person days as their boss also expect to be allowed

more remote work in the future.

Employer planned remote work shares by attitudes towards remote work coordi-

nation with colleagues are shown in Figure A-24. The difference in employer plans
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(a): Feb 2022, N = 3,122; (b): Same as (a); (c): Oct 2021 - Sep 2022, N = 7,796;
(d): Oct 2021 - Sep 2022, N = 8,022.

Figure A-15: Current remote work share by attitudes towards coordinating with
colleagues

between those who prefer to coordinate with colleagues are less pronounced than dif-

ferences in remote work preferences for the same groups. Interestingly, people who

join their boss or colleagues working in-person expect to receive less remote work

in the future, suggesting expectations of a wider return-to-office shift within their

organization.

Employer planned remote work shares by attitudes towards remote work more

generally are shown in Figure A-25. Those who find remote work to increase their ef-

fectiveness appear to expect their employers to respond to this increased effectiveness

by offering greater levels of remote work, although the effect is almost certainly bi-

directional. In contrast, people do not expect their employer to consider their stress

levels when setting remote work plans, as there is no obvious trend across groups.
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(a): Jul 2020 - Jan 2023, N = 90,213 (b): Oct 2021, N = 2,780 (c): May 2021 -
Aug 2022, N = 5,843; (d): Jul 2022, N = 3,452.

Figure A-16: Current remote work share by attitudes towards remote work

Those who are particularly eager to work harder to support their organization’s suc-

cess do expect more remote work, and those with the opposite attitude expect their

employer to allow them to work remotely for less than 10% of their hours.

Employer planned remote work shares by the perceived benefits of remote work

are shown in Figure A-26. There is little variation among the response groups with

respect to employer planned shares of remote work.

Finally, planned remote work shares by life priorities are shown in Figure A-27.

As with the observed shares of remote work in Figure A-9, there are some notable

differences between response groups. Placing a higher priority on work and a lower

priority on family is associated with higher levels of remote work. Employer plans

for high levels of remote work are also associated with the extremes for prioirty of
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All: Feb 2022 - Sep 2022, N = 28,836.

Figure A-17: Current remote work share by perceived benefits of remote work

leisure and friends.
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All: Jul 2022, N = 3,309.

Figure A-18: Current remote work share by life priorities
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All: May 2020 - Jan 2023, N = 139,465.

Figure A-19: Current remote work share by demographic group
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(a): Aug 2021 - Jan 2023, N = 129,138; (b): May 2020 - Jan 2023, N = 139,460;
(c): Jul 2020 - Oct 2022, N = 117,719; (d): Jul 2020 - Jan 2023, N = 129,405; (e):
May 2020 - Dec 2021, N = 47,903; (f): May 2020 - Jan 2023, N = 84,336.

Figure A-20: Current remote work share by household characteristics
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(a): Aug 2021 - Jan 2023, N = 69,436; (b): Sep 2021 - Oct 2021, N = 6,439; (c):
Feb 2021 - Jan 2023, N = 96,001; (d): Jul 2020 - Jan 2023, N = 106,513.

Figure A-21: Current remote work share by employment characteristics
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(a): Apr 2022 - Sep 2022, N = 24,157; (b): Sep 2021 - Oct 2021, N = 7,117; (c):
May 2022 - Jun 2022, N = 8,199; (d): Mar 2022 - Apr 2022, N = 6,323.

Figure A-22: Current remote work share by task characteristics
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(a): Jul 2021 - Jan 2022, N = 3,253; (b): May 2022 - Nov 2022, N = 29,657; (c):
Jan 2022 - Sep 2022, N = 6,963; (d): Oct 2021 - Sep 2022, N = 10,673.

Figure A-23: Current remote work share by remote work policy
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(a): Feb 2022, N = 3,122; (b): Same as (a); (c): Oct 2021 - Sep 2022, N = 7,796;
(d): Oct 2021 - Sep 2022, N = 8,022.

Figure A-24: Current remote work share by attitudes towards coordinating with
colleagues
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(a): Jul 2020 - Jan 2023, N = 90,213 (b): Oct 2021, N = 2,780 (c): May 2021 -
Aug 2022, N = 5,843; (d): Jul 2022, N = 3,452.

Figure A-25: Current remote work share by attitudes towards remote work
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All: Feb 2022 - Sep 2022, N = 28,836.

Figure A-26: Current remote work share by perceived benefits of remote work
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All: Jul 2022, N = 3,309.

Figure A-27: Current remote work share by life priorities
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Appendix B

Details of travel behavior model

inputs (Chapter 4)

Note that the dependent variables used in each of the travel behavior models (remote

work arrangement, mode choice, departure time choice and trip frequency) in Chap-

ter 4 were asked to different respondents to limit the cognitive burden of individual

survey questionnaires. As a result, the sample compositions and sizes are somewhat

different for each model. A model summary is provided in Table B.1, the endogenous

variables for all models are summarized in Table B.2, and the descriptive statistics of

the exogenous variables are presented for each model in Tables B.4 - B.6 that follow.

Table B.1: Summary of travel behavior models

Endogenous variable Model structure Survey waves Sample
Remote work arrangement ZOIB regression May 2022 2128
Third place trip frequency Ordinal logit Nov. 2022 - Jan. 2023 1852
Third place departure time Multinomial logit Nov. 2022 - Jan. 2023 1536
Third place mode choice Multinomial logit Jan. 2022 - Apr. 2023 3662
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Table B.2: Summary of endogenous variables for travel behavior models

Model Question Count
Arrangement For each day last week , did you

work a full day (6 or more hours), and if so where?
[remote % of days computed]

Trip frequency Last week, how many times did you travel from your home
to work at each of the following locations? [choose
from third place types]

0 658
1 102
2 109
3 198
4 133
5+ 652

Departure time Approximately what time of day did you travel to the third
place that you worked at most recently?

Before 7:00am 82
7:00am - 7:59am 227
8:00am - 8:59am 250
9:00am - 9:59am 260
10:00am - 11:59am 392
12:00pm - 1:59pm 162
2:00pm - 3:59pm 78
4:00pm or later 85

Mode choice What is your primary transportation mode for commuting
to the third place where you usually work?

Drive alone 2470
Carpool 162
Public transit (train, bus, ferry) 380
Bicycle 140
Walking 225
Taxi / Ridehailing 285
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Table B.3: Exogenous variables included in ZOIB regression model

Variable Type Mean
Education (years) Continuous 15.87
Home ZIP population density Categorical

Urban (>3000 people/sq.mi) 0.49
Suburban (1000 - 3000 people/sq.mi) 0.19
Rural (<1000 people/sq.mi) 0.32

Child under 5 Categorical
Yes 0.23
No 0.77

Employer size (C1) Continuous 458.97
Percent of work on computer Continuous 59.51
Percent of work in meetings Continuous 48.45
Percent of work in meetings with coworkers Continuous 34.42
Change in perception of RW among people you know (E2) Categorical

Better for almost all 0.44
Better for most 0.25
Better for some 0.09
No change 0.17
Worse for some 0.02
Worse for most 0.02
Worse for almost all 0.01
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Table B.4: Exogenous variables included in the third place trip frequency model

Variable Type Mean
Annual income ($USD, thousands) Continuous 111.54
Age (years) Continuous 39.37
Education (years) Continuous 15.77
One-way commuting time (minutes) Continuous 27.82
Efficiency of remote work relative to in-person (%) Continuous 10.45%
Home ZIP population density Categorical

Urban (>3000 people/sq.mi) 0.47
Suburban (1000 - 3000 people/sq.mi) 0.23
Rural (<1000 people/sq.mi) 0.30

Gender identity Categorical
Male 0.51
Female 0.49

Remote work arrangement (A1) Categorical
Hybrid 0.39
Fully remote 0.61

Employer size (C1) Categorical
Large (≥ 500 staff) 0.49
Moderate (50 - 499 staff) 0.15
Small (<50 staff) 0.36

Manage others (C3) Categorical
Yes 0.54
No 0.46

Living arrangements (D3, D4) Categorical
Live with roommates 0.03
Live with partner and/or child 0.76
Live alone 0.21
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Table B.5: Exogenous variables included in the third place departure time model

Variable Type Mean
Annual income ($USD, thousands) Continuous 136.56
Age (years) Continuous 37.42
Education (years) Continuous 16.21
One-way commuting time (minutes) Continuous 31.26
Efficiency of remote work relative to in-person (%) Continuous 11.23%
Home ZIP population density Categorical

Urban (>3000 people/sq.mi) 0.57
Suburban (1000 - 3000 people/sq.mi) 0.19
Rural (<1000 people/sq.mi) 0.25

Gender identity Categorical
Male 0.61
Female 0.39

Remote work arrangement (A1) Categorical
Hybrid 0.42
Fully remote 0.58

Employer size (C1) Categorical
Large (≥ 500 staff) 0.45
Moderate (50 - 499 staff) 0.43
Small (<50 staff) 0.12

Manage others (C3) Categorical
Yes 0.67
No 0.33

Supervisor prefers no remote work in the future (B5) Categorical
Yes 0.10
No 0.90

Continue social distancing (E6) Categorical
Yes 0.48
No 0.52

Living arrangements (D3, D4) Categorical
Live with roommates 0.03
Live with partner and/or child 0.80
Live alone 0.17
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Table B.6: Exogenous variables included in the third place mode choice model

Variable Type Mean
Annual income ($USD, thousands) Continuous 168.98
Age (years) Continuous 37.28
Education (years) Continuous 16.34
One-way commuting time (minutes) Continuous 31.90
Home ZIP population density Categorical

Urban (>3000 people/sq.mi) 0.62
Suburban (1000 - 3000 people/sq.mi) 0.17
Rural (<1000 people/sq.mi) 0.19

Gender identity Categorical
Male 0.66
Female 0.34

Remote work arrangement (A1) Categorical
Hybrid 0.38
Fully remote 0.62
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Appendix C

Sensitivity analysis for shared

workplace locations (Chapter 8)

This appendix explores the sensitivity of the results in the numerical experiment to

variations in the estimated MNL model coefficients. It is possible that preferences

for shared workplaces may change over time, therefore it may be helpful for policy

makers to understand how the results and performance of the shared workplaces

would change in response. Four alternative scenarios are imagined:

1. Preferences for shared workplaces increase relative to working at home (𝛽0 ×

0.75)

2. Preferences for shared workplaces decrease relative to working at home (𝛽0 ×

1.25)

3. The perceived disutility of traveling to shared workplaces increases (𝛽𝑡𝑡×1.25)

4. The perceived disutility of traveling to shared workplaces decreases (𝛽𝑡𝑡×0.75)

341



In each scenario, the magnitudes of either 𝛽0 or 𝛽𝑡𝑡 is artificially increased or de-

creased by 25% compared to the values shown in Table 8.2 as appropriate. Table C.1

indicates the number of optimal locations that differ from the initial solution, for each

objective function 1 through 6, for each of the four sensitivity analysis scenarios de-

scribed above. Rather than exploring the new optimal solutions in full, only changes

in the selected locations are reported for brevity. Table C.2 shows the changes in

each of the performance measure by objective and sensitivity analysis scenario.

C.1 Changes in optimal solution by objective

Due to the discrete nature of the shared workplace location problem, the optimal

solutions are fairly robust to changes in the choice model parameters. There are

30 locations chosen across all six objectives in each of the four sensitivity analysis

scenarios, for a total of 120 locations. Only 14 location choices were changed relative

to the optimal solutions shown in Section 8.4. The number of changed locations in

the optimal solution by sensitivity analysis scenario and objective is summarized in

Table C.1.

Scenario Number of changed locations, by objective
#1 #2 #3 #4 #5 #6

Scenario 1: 𝛽0 × 0.75 1 0 0 1 0 0
Scenario 2: 𝛽0 × 1.25 0 1 0 0 0 0
Scenario 3: 𝛽𝑡𝑡 × 1.25 1 0 0 1 2 1
Scenario 4: 𝛽𝑡𝑡 × 0.75 1 1 0 1 2 1

Table C.1: Sensitivity of optimal location choices to changes in the estimated
workplace choice model coefficients

11 of the optimal location choice changes occurred in the scenarios where 𝛽𝑡𝑡

was modified, indicating that the choice of 𝛽𝑡𝑡 has a stronger effect on the outcomes
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than the choice of 𝛽0. The optimal solution for Objective #3 (maximum interaction

opportunities) was unchanged across all sensitivity analysis scenarios. The solu-

tion under Objective #5 (minimize income segregation) was the most susceptible to

change under different choice model parameters.

C.2 Changes in performance measures by objective

The performance measures change slightly for each objective in each scenario. Gen-

erally, the performance changes in the same direction across all objectives. The first

four performance measures are all related in some sense to the total demand for

shared workplaces, so they tend to rise when the model parameters are adjusted

to increase the utility of shared workplaces, and decline when the utility of shared

workplaces is adjusted downwards. The diversity of the visitors to each location is

entirely unrelated to demand and to the parameters adjusted in the sensitivity anal-

ysis, so the changes in that performance measure are more variable in magnitude

and direction.

Adjusting the magnitude of the shared workplace alternative-specific constant

(Scenarios 1 and 2) has less of an impact on the performance measures. Generally,

if the new solution involves a different set of locations, the changes in performance

are greater. In Scenarios 3 and 4, where the 𝛽𝑡𝑡 parameter is adjusted, the optimal

solutions under Objectives #1, #4, #5, and #6 all involve a new set of locations

and the performance metrics vary substantially relative to the initial solutions.
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Measure Percent change in value, by objective
#1 #2 #3 #4 #5 #6

Scenario 1: 𝛽0 × 0.75
Travel distance (mi) +3.5 +0.5 +0.0 +2.5 +1.2 +0.1
Workplace users +0.2 +0.0 +0.0 +6.7 +0.4 +0.0
Interaction opportunities -1.2 +0.0 +0.0 +7.4 +8.6 +0.0
Q1-Q2 interaction opportuni-
ties +7.4 +0.1 +0.1 +0.0 +6.7 +0.2

Deviation from pop. diversity +4.6 -0.1 -0.1 +3.9 +0.7 +0.3
Scenario 2: 𝛽0 × 1.25
Travel distance (mi) -0.6 -5.0 -2.3 -1.2 -0.4 -2.7
Workplace users -1.5 -2.3 -2.0 -1.6 -3.7 -2.3
Interaction opportunities -3.5 -4.0 -4.8 -3.4 -3.0 -5.4
Q1-Q2 interaction opportuni-
ties -0.1 -7.7 -5.2 -5.3 -4.8 -5.2

Deviation from pop. diversity 7.2 19.2 1.7 -0.8 11.0 0.4
Scenario 3: 𝛽𝑡𝑡 × 1.25
Travel distance (mi) -12.1 -7.2 -10.3 -12.0 -18.0 -12.8
Workplace users -12.2 -4.6 -4.6 -5.7 -36.8 -9.0
Interaction opportunities -18.6 -8.9 -9.2 -9.7 -50.9 -11.9
Q1-Q2 interaction opportuni-
ties -21.6 -9.6 -10.8 -11.4 -59.6 -11.2

Deviation from pop. diversity +2.5 +1.9 +6.7 -1.4 -0.9 -5.5
Scenario 4: 𝛽𝑡𝑡 × 0.75
Travel distance (mi) +20.7 +12.8 +16.1 +17.3 +6.0 +43.3
Workplace users +10.3 +6.2 +6.5 +13.6 -3.3 +33.5
Interaction opportunities +18.0 +14.6 +13.6 +20.4 -2.4 +43.1
Q1-Q2 interaction opportuni-
ties +27.8 +8.1 +11.0 +11.7 -3.8 +27.2

Deviation from pop. diversity +7.4 +17.3 +0.1 +4.8 -1.3 +10.0

Table C.2: Sensitivity of performance measures to changes in the estimated work-
place choice model coefficients
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